CCT:1103
12371K
CRI DC:1101
7.67E-3
CRI R01:1086
11.1 (12371K)
CRI R02:1087
32.0 (12371K)
CRI R03:1088
50.7 (12371K)
CRI R04:1089
38.4 (12371K)
CRI R05:1090
10.7 (12371K)
CRI R06:1091
-4.7 (12371K)
CRI R07:1092
-10.6 (12371K)
CRI R08:1093
-13.8 (12371K)
CRI R09:1094
38.3 (12371K)
CRI R10:1095
35.4 (12371K)
CRI R11:1096
55.6 (12371K)
CRI R12:1097
40.7 (12371K)
CRI R13:1098
-9.5 (12371K)
CRI R14:1099
62.8 (12371K)
CRI R15:1100
16.2 (12371K)
CRI Ra:1085
14.2 (12371K)
DC<5.4E-3:1102
false
Spectrum 814: TG-ETUVB20039W-001 Edit
DeleteMeasurement
Brand |
Exo Terra Rolf C. Hagen Inc. http://www.hagen.com/ |
---|---|
Lamp Product |
Exo Terra UVB200 T5HO 39W For Testing |
Lamp ID |
TG-ETUVB20039W-001 (09/2024) Testing Lamp |
Spectrometer | FLAME UV-Vis (E) |
Ballast | - no ballast or default/unknown ballast - |
Reflector | |
Distance | 22 cm |
Age | 100 hours |
Originator (measurement) | Thomas Griffiths |
Colorimetry
Colorimetry is the science to describe physically the human color perception. The wavelength range 380 nm - 780 nm is visible to humans and detected by three different photoreceptors. Many Reptiles see the range 350 nm - 800 nm and have an additional UV photoreceptor in their retina.
Whereas a spectrometer measures the intensity in every tiny wavelength interval resulting in thousands of individual intensities, the human eye only measures three intensities detected by the three cones. The same is true for the reptile eye with usually three or four photoreceptors. Effectively the detailled spectrum displayed above reduces to a much compacter bar graph displayed below. The photoreceptor sensitivites from these L-Cone, M-Cone, S-Cone, and U-Cone are used, they are chosen as an average of measured reptile photoreceptor sensitivity curves. The bar graph also shows as reference the intensity seen by the three or four photoreceptors for average sunlight (id 1).
From these three numbers the colour coordinate and the correlated colour temperature for humans are calculated using the CIE standard method. I adapted this concept to a "3 cone reptile (M,S,U)" and a "4 cone reptile (L,M,S,U)". I am sure, that this adaption to other colour spaces makes sense mathematically and this is also done in scientific research regarding colour vision of animals, however I have not seen calculation of colour temperatures for other animals in the scientific literature. Even if it is hypothetical, at least this shows, how arbitrary the colour temperature is, and that the colour temperature calculated for humans does not apply to reptiles. The colour spaces also show the colour coordinates of different phases of daylight ((ids 1, 338 – 451, 511 – 513 ), indicated by crosses, coloured in the appriximate colour perceived by a human.
Human (CIE) | 3 cone reptile | 4 cone reptile | |
---|---|---|---|
Cone Excitation | |||
Colour Coordinate | ( 0.27 ; 0.27 ) | ( 0.23 ; 0.41 ) | ( 0.17 ; 0.19 ; 0.34 ) |
CCT | 12000 Kelvin | 11000 Kelvin | 11000 Kelvin |
distance | 0.083 | 0.067 | |
colour space | 3-D-graph not implemented yet |
Vitamin D3 Analysis
Vitamin D3 is produced by UVB radiation around 300 nm. 7DHC/ProD3 present in the skin is converted to PreD3 when absorbing an UV photon. PreD3 can be converted back to ProD3, to Lumisterol, or to Tachysterol when absorbing another UV photon or can be converted to Vitamin D3 in a warm environment.
This process prevents any overdose of vitamin D3 from UV radiation with a spectrum similar to sunlight. As a comparison the solar spectra at 20°(id:14) and at 85°(id:21) solar angle are shown.
The ratio of the two solarmeters 6.2 (UVB) and 6.5 (UV index) readings has proven a useful and very simply number to acess the spectral shape in the vitamin-d3-active region.
Effective Irradiances
Effective irradiances are calculated for all ranges, actionspectra and radiometers currently present in this database.
The calculation method is a numerical implementation (Simpson's rule) of the formula
To learn more about calculating effective irradiances and radiometers I recommend this excellent report on UVB meters: Characterizing the Performance of Integral Measuring UV-Meters (pdf).
The numbers in the following tables can also be used to estimate certain (effective) irradiances from radiomer readings. Example: If the database lists
- range: UVB (US) = 13.8 µW/cm²
- radiometer: Solarmeter 6.2 = 19.6 µW/cm²
total ( 0 nm - 0 nm) 1040 µW/cm² = 10.4 W/m² UVC ( 0 nm - 280 nm) 0 µW/cm² = 0 W/m² non-terrestrial ( 0 nm - 290 nm) 0 µW/cm² = 0 W/m² total2 ( 250 nm - 880 nm) 1040 µW/cm² = 10.4 W/m² UVB (EU) ( 280 nm - 315 nm) 34.5 µW/cm² = 0.345 W/m² UVB (US) ( 280 nm - 320 nm) 65.4 µW/cm² = 0.654 W/m² UVA+B ( 280 nm - 380 nm) 514 µW/cm² = 5.14 W/m² Solar UVB ( 290 nm - 315 nm) 34.5 µW/cm² = 0.345 W/m² UVA D3 regulating ( 315 nm - 335 nm) 171 µW/cm² = 1.71 W/m² UVA (EU) ( 315 nm - 380 nm) 479 µW/cm² = 4.79 W/m² UVA2 (medical definition) ( 320 nm - 340 nm) 200 µW/cm² = 2 W/m² UVA (US) ( 320 nm - 380 nm) 448 µW/cm² = 4.48 W/m² UVA1 (variant) ( 335 nm - 380 nm) 308 µW/cm² = 3.08 W/m² UVA1 (medical) ( 340 nm - 400 nm) 271 µW/cm² = 2.71 W/m² vis. UVA ( 350 nm - 380 nm) 139 µW/cm² = 1.39 W/m² VIS Rep3 ( 350 nm - 600 nm) 549 µW/cm² = 5.49 W/m² VIS Rep4 ( 350 nm - 700 nm) 639 µW/cm² = 6.39 W/m² purple ( 380 nm - 420 nm) 68.4 µW/cm² = 0.684 W/m² VIS ( 380 nm - 780 nm) 521 µW/cm² = 5.21 W/m² VIS2 ( 400 nm - 680 nm) 467 µW/cm² = 4.67 W/m² PAR ( 400 nm - 700 nm) 478 µW/cm² = 4.78 W/m² tmp ( 400 nm - 1100 nm) 501 µW/cm² = 5.01 W/m² blue ( 420 nm - 490 nm) 170 µW/cm² = 1.7 W/m² green ( 490 nm - 575 nm) 133 µW/cm² = 1.33 W/m² yellow ( 575 nm - 585 nm) 24 µW/cm² = 0.24 W/m² orange ( 585 nm - 650 nm) 64.4 µW/cm² = 0.644 W/m² red ( 650 nm - 780 nm) 61.6 µW/cm² = 0.616 W/m² IRA ( 700 nm - 1400 nm) 23.7 µW/cm² = 0.237 W/m² IR2 ( 720 nm - 1100 nm) 16 µW/cm² = 0.16 W/m² IRB ( 1400 nm - 3000 nm) 0 µW/cm² = 0 W/m²
Erythema 1.73 UV-Index Pyrimidine dimerization of DNA 22.1 µW/cm² Photoceratitis 2.67 µW/cm² Photoconjunctivitis 0.0435 µW/cm² DNA Damage 0.148 Vitamin D3 6.9 µW/cm² Photosynthesis 347 µW/cm² Luminosity 1170 lx Human L-Cone 171 µW/cm² Human M-Cone 154 µW/cm² Human S-Cone 150 µW/cm² CIE X 164 µW/cm² CIE Y 162 µW/cm² CIE Z 272 µW/cm² PAR 2320000 mol photons Extinction preD3 66.7 e-3*m²/mol Extinction Tachysterol 247 e-3*m²/mol Exctincition PreD3 34500 m²/mol Extinction Lumisterol 5.57 m²/mol Exctincition Tachysterol 401000 m²/mol Extinction 7DHC 4.83 m²/mol L-Cone 140 µW/cm² M-Cone 156 µW/cm² S-Cone 276 µW/cm² U-Cone 240 µW/cm² UVR - ICNIRP 2004 1.18 Rel Biol Eff Melatonin Supression 190 µW/cm² Blue Light Hazard 171 µW/cm² (146 µW/cm² per 1000 lx) CIE 174:2006 PreVit D3 7.39 µW/cm² Lumen Reptil 1660 "pseudo-lx" Vitamin D3 Degradation 13 µW/cm² Actinic UV 1.18 µW/cm² (10 mW/klm) Exctincition Lumisterol 9550 m²/mol Exctincition 7DHC 6520 m²/mol Exctincition Toxisterols 7670 m²/mol
Solarmeter 6.2 (UVB, pre 2010) 88.1 µW/cm² Solarmeter 6.5 (UV-Index, pre 2010) 2.11 Leybold UVB 59.4 µW/cm² Leybold UVA 332 µW/cm² Leybold UVC 0.00264 µW/cm² DeltaOhm UVB 198 µW/cm² DeltaOhm UVC 20.8 µW/cm² Vernier UVB 14.3 µW/cm² Vernier UVA 332 µW/cm² Gröbel UVA 406 µW/cm² Gröbel UVB 26.4 µW/cm² Gröbel UVC -0.0203 µW/cm² Luxmeter 1220 lx Solarmeter 6.4 (D3) 6.58 IU/min UVX-31 220 µW/cm² IL UVB 0.0399 µW/cm² IL UVA 361 µW/cm² Solarmeter 6.5 (UVI, post 2010) 1.83 UV-Index Solarmeter 6.2 (UVB, post 2010) 64.7 µW/cm² (Solarmeter Ratio = 35.3) Solarmeter AlGaN 6.5 UVI sensor 29.5 UV Index GenUV 7.1 UV-Index 1.85 UV-Index Solarmeter 10.0 (Global Power) (manuf.) 7.2 W/m² Solarmeter 4.0 (UVA) 4.62 mW/cm² LS122 (manuf.) 0.00029 W/m² ISM400 (first guess) 3.6 W/m² LS122 (assumption) 0.152 W/m² ISM400_new 2.84 W/m² Solarmeter 10.0 (Global Power) (assumption) 5.65 W/m²