CCT:1019
11236K
CRI DC:1017
7.00E-3
CRI R01:1002
21.1 (11236K)
CRI R02:1003
37.1 (11236K)
CRI R03:1004
52.4 (11236K)
CRI R04:1005
42.5 (11236K)
CRI R05:1006
22.3 (11236K)
CRI R06:1007
10.9 (11236K)
CRI R07:1008
5.5 (11236K)
CRI R08:1009
1.1 (11236K)
CRI R09:1010
45.4 (11236K)
CRI R10:1011
37.3 (11236K)
CRI R11:1012
58.2 (11236K)
CRI R12:1013
48.3 (11236K)
CRI R13:1014
1.3 (11236K)
CRI R14:1015
65.4 (11236K)
CRI R15:1016
23.7 (11236K)
CRI Ra:1001
24.1 (11236K)
DC<5.4E-3:1018
false
Spectrum 807: TG-ETUVB30024W-001 Edit
DeleteMeasurement
Brand |
Exo Terra Rolf C. Hagen Inc. http://www.hagen.com/ |
---|---|
Lamp Product |
Exo Terra UVB300 T5HO 24W Exo Terra UVB300 T5HO 24W |
Lamp ID |
TG-ETUVB30024W-001 (09/2024) Testing Lamp |
Spectrometer | FLAME UV-Vis (E) |
Ballast | - no ballast or default/unknown ballast - |
Reflector | |
Distance | 25 cm |
Age | 100 hours |
Originator (measurement) | Thomas Griffiths |
Colorimetry
Colorimetry is the science to describe physically the human color perception. The wavelength range 380 nm - 780 nm is visible to humans and detected by three different photoreceptors. Many Reptiles see the range 350 nm - 800 nm and have an additional UV photoreceptor in their retina.
WARNING: The measurement range (350 - 800 nm) is not sufficient for this evaluation! Data is only available in the range 290.067 - 799.849 nm. Results are shown anyway but should be ignored by anyone except experts.
Whereas a spectrometer measures the intensity in every tiny wavelength interval resulting in thousands of individual intensities, the human eye only measures three intensities detected by the three cones. The same is true for the reptile eye with usually three or four photoreceptors. Effectively the detailled spectrum displayed above reduces to a much compacter bar graph displayed below. The photoreceptor sensitivites from these L-Cone, M-Cone, S-Cone, and U-Cone are used, they are chosen as an average of measured reptile photoreceptor sensitivity curves. The bar graph also shows as reference the intensity seen by the three or four photoreceptors for average sunlight (id 1).
From these three numbers the colour coordinate and the correlated colour temperature for humans are calculated using the CIE standard method. I adapted this concept to a "3 cone reptile (M,S,U)" and a "4 cone reptile (L,M,S,U)". I am sure, that this adaption to other colour spaces makes sense mathematically and this is also done in scientific research regarding colour vision of animals, however I have not seen calculation of colour temperatures for other animals in the scientific literature. Even if it is hypothetical, at least this shows, how arbitrary the colour temperature is, and that the colour temperature calculated for humans does not apply to reptiles. The colour spaces also show the colour coordinates of different phases of daylight ((ids 1, 338 – 451, 511 – 513 ), indicated by crosses, coloured in the appriximate colour perceived by a human.
Human (CIE) | 3 cone reptile | 4 cone reptile | |
---|---|---|---|
Cone Excitation | |||
Colour Coordinate | ( 0.28 ; 0.28 ) | ( 0.23 ; 0.4 ) | ( 0.18 ; 0.19 ; 0.33 ) |
CCT | 11000 Kelvin | 12000 Kelvin | 11000 Kelvin |
distance | 0.076 | 0.063 | |
colour space | 3-D-graph not implemented yet |
Vitamin D3 Analysis
Vitamin D3 is produced by UVB radiation around 300 nm. 7DHC/ProD3 present in the skin is converted to PreD3 when absorbing an UV photon. PreD3 can be converted back to ProD3, to Lumisterol, or to Tachysterol when absorbing another UV photon or can be converted to Vitamin D3 in a warm environment.
This process prevents any overdose of vitamin D3 from UV radiation with a spectrum similar to sunlight. As a comparison the solar spectra at 20°(id:14) and at 85°(id:21) solar angle are shown.
The ratio of the two solarmeters 6.2 (UVB) and 6.5 (UV index) readings has proven a useful and very simply number to acess the spectral shape in the vitamin-d3-active region.
Effective Irradiances
Effective irradiances are calculated for all ranges, actionspectra and radiometers currently present in this database.
The calculation method is a numerical implementation (Simpson's rule) of the formula
To learn more about calculating effective irradiances and radiometers I recommend this excellent report on UVB meters: Characterizing the Performance of Integral Measuring UV-Meters (pdf).
The numbers in the following tables can also be used to estimate certain (effective) irradiances from radiomer readings. Example: If the database lists
- range: UVB (US) = 13.8 µW/cm²
- radiometer: Solarmeter 6.2 = 19.6 µW/cm²
total ( 0 nm - 0 nm) 1270 µW/cm² = 12.7 W/m² UVC ( 0 nm - 280 nm) 0 µW/cm² = 0 W/m² non-terrestrial ( 0 nm - 290 nm) 0 µW/cm² = 0 W/m² total2 ( 250 nm - 880 nm) 1270 µW/cm² = 12.7 W/m² UVB (EU) ( 280 nm - 315 nm) 77.3 µW/cm² = 0.773 W/m² UVB (US) ( 280 nm - 320 nm) 131 µW/cm² = 1.31 W/m² UVA+B ( 280 nm - 380 nm) 686 µW/cm² = 6.86 W/m² Solar UVB ( 290 nm - 315 nm) 77.3 µW/cm² = 0.773 W/m² UVA D3 regulating ( 315 nm - 335 nm) 250 µW/cm² = 2.5 W/m² UVA (EU) ( 315 nm - 380 nm) 609 µW/cm² = 6.09 W/m² UVA2 (medical definition) ( 320 nm - 340 nm) 270 µW/cm² = 2.7 W/m² UVA (US) ( 320 nm - 380 nm) 556 µW/cm² = 5.56 W/m² UVA1 (variant) ( 335 nm - 380 nm) 359 µW/cm² = 3.59 W/m² UVA1 (medical) ( 340 nm - 400 nm) 311 µW/cm² = 3.11 W/m² vis. UVA ( 350 nm - 380 nm) 158 µW/cm² = 1.58 W/m² VIS Rep3 ( 350 nm - 600 nm) 614 µW/cm² = 6.14 W/m² VIS Rep4 ( 350 nm - 700 nm) 716 µW/cm² = 7.16 W/m² purple ( 380 nm - 420 nm) 78.9 µW/cm² = 0.789 W/m² VIS ( 380 nm - 780 nm) 584 µW/cm² = 5.84 W/m² VIS2 ( 400 nm - 680 nm) 519 µW/cm² = 5.19 W/m² PAR ( 400 nm - 700 nm) 532 µW/cm² = 5.32 W/m² tmp ( 400 nm - 1100 nm) 561 µW/cm² = 5.61 W/m² blue ( 420 nm - 490 nm) 185 µW/cm² = 1.85 W/m² green ( 490 nm - 575 nm) 148 µW/cm² = 1.48 W/m² yellow ( 575 nm - 585 nm) 28 µW/cm² = 0.28 W/m² orange ( 585 nm - 650 nm) 72.4 µW/cm² = 0.724 W/m² red ( 650 nm - 780 nm) 71.8 µW/cm² = 0.718 W/m² IRA ( 700 nm - 1400 nm) 28.9 µW/cm² = 0.289 W/m² IR2 ( 720 nm - 1100 nm) 20.1 µW/cm² = 0.201 W/m² IRB ( 1400 nm - 3000 nm) 0 µW/cm² = 0 W/m²
Erythema 3.88 UV-Index Pyrimidine dimerization of DNA 47.2 µW/cm² Photoceratitis 6.26 µW/cm² Photoconjunctivitis 0.0977 µW/cm² DNA Damage 0.327 Vitamin D3 17 µW/cm² Photosynthesis 384 µW/cm² Luminosity 1320 lx Human L-Cone 194 µW/cm² Human M-Cone 173 µW/cm² Human S-Cone 162 µW/cm² CIE X 183 µW/cm² CIE Y 183 µW/cm² CIE Z 295 µW/cm² PAR 2600000 mol photons Extinction preD3 135 e-3*m²/mol Extinction Tachysterol 487 e-3*m²/mol Exctincition PreD3 65300 m²/mol Extinction Lumisterol 13.6 m²/mol Exctincition Tachysterol 726000 m²/mol Extinction 7DHC 10.9 m²/mol L-Cone 159 µW/cm² M-Cone 171 µW/cm² S-Cone 301 µW/cm² U-Cone 275 µW/cm² UVR - ICNIRP 2004 2.7 Rel Biol Eff Melatonin Supression 208 µW/cm² Blue Light Hazard 188 µW/cm² (142 µW/cm² per 1000 lx) CIE 174:2006 PreVit D3 18.6 µW/cm² Lumen Reptil 1850 "pseudo-lx" Vitamin D3 Degradation 25.3 µW/cm² Actinic UV 2.69 µW/cm² (20.3 mW/klm) Exctincition Lumisterol 22100 m²/mol Exctincition 7DHC 14800 m²/mol Exctincition Toxisterols 12600 m²/mol
Solarmeter 6.2 (UVB, pre 2010) 163 µW/cm² Solarmeter 6.5 (UV-Index, pre 2010) 4.96 Leybold UVB 115 µW/cm² Leybold UVA 399 µW/cm² Leybold UVC 0.00485 µW/cm² DeltaOhm UVB 308 µW/cm² DeltaOhm UVC 35.8 µW/cm² Vernier UVB 34 µW/cm² Vernier UVA 439 µW/cm² Gröbel UVA 512 µW/cm² Gröbel UVB 54 µW/cm² Gröbel UVC -0.0378 µW/cm² Luxmeter 1380 lx Solarmeter 6.4 (D3) 15.5 IU/min UVX-31 336 µW/cm² IL UVB 0.0697 µW/cm² IL UVA 441 µW/cm² Solarmeter 6.5 (UVI, post 2010) 4.28 UV-Index Solarmeter 6.2 (UVB, post 2010) 114 µW/cm² (Solarmeter Ratio = 26.6) Solarmeter AlGaN 6.5 UVI sensor 65.1 UV Index GenUV 7.1 UV-Index 3.81 UV-Index Solarmeter 10.0 (Global Power) (manuf.) 8.5 W/m² Solarmeter 4.0 (UVA) 5.68 mW/cm² LS122 (manuf.) 0 W/m² ISM400 (first guess) 4.1 W/m² LS122 (assumption) 0.172 W/m² ISM400_new 3.24 W/m² Solarmeter 10.0 (Global Power) (assumption) 6.52 W/m²