CCT:1019
8991K
CRI DC:1017
2.10E-3
CRI R01:1002
64.1 (8991K)
CRI R02:1003
63.0 (8991K)
CRI R03:1004
62.4 (8991K)
CRI R04:1005
59.2 (8991K)
CRI R05:1006
60.1 (8991K)
CRI R06:1007
61.9 (8991K)
CRI R07:1008
62.9 (8991K)
CRI R08:1009
61.7 (8991K)
CRI R09:1010
89.8 (8991K)
CRI R10:1011
55.1 (8991K)
CRI R11:1012
65.0 (8991K)
CRI R12:1013
79.2 (8991K)
CRI R13:1014
50.4 (8991K)
CRI R14:1015
75.8 (8991K)
CRI R15:1016
64.0 (8991K)
CRI Ra:1001
61.9 (8991K)
DC<5.4E-3:1018
true
Spectrum 805: TG-ETUVB10024W-001 Edit
DeleteMeasurement
Brand |
Exo Terra Rolf C. Hagen Inc. http://www.hagen.com/ |
---|---|
Lamp Product |
Exo Terra UVB100 T5HO 24W Exo Terra UVB100 T5HO 24W |
Lamp ID |
TG-ETUVB10024W-001 (07/2024) TG-ETUVB10024W-001 Testing |
Spectrometer | FLAME UV-Vis (E) |
Ballast | - no ballast or default/unknown ballast - |
Reflector | |
Distance | 20 cm |
Age | 100 hours |
Originator (measurement) | Thomas Griffiths |
Colorimetry
Colorimetry is the science to describe physically the human color perception. The wavelength range 380 nm - 780 nm is visible to humans and detected by three different photoreceptors. Many Reptiles see the range 350 nm - 800 nm and have an additional UV photoreceptor in their retina.
Whereas a spectrometer measures the intensity in every tiny wavelength interval resulting in thousands of individual intensities, the human eye only measures three intensities detected by the three cones. The same is true for the reptile eye with usually three or four photoreceptors. Effectively the detailled spectrum displayed above reduces to a much compacter bar graph displayed below. The photoreceptor sensitivites from these L-Cone, M-Cone, S-Cone, and U-Cone are used, they are chosen as an average of measured reptile photoreceptor sensitivity curves. The bar graph also shows as reference the intensity seen by the three or four photoreceptors for average sunlight (id 1).
From these three numbers the colour coordinate and the correlated colour temperature for humans are calculated using the CIE standard method. I adapted this concept to a "3 cone reptile (M,S,U)" and a "4 cone reptile (L,M,S,U)". I am sure, that this adaption to other colour spaces makes sense mathematically and this is also done in scientific research regarding colour vision of animals, however I have not seen calculation of colour temperatures for other animals in the scientific literature. Even if it is hypothetical, at least this shows, how arbitrary the colour temperature is, and that the colour temperature calculated for humans does not apply to reptiles. The colour spaces also show the colour coordinates of different phases of daylight ((ids 1, 338 – 451, 511 – 513 ), indicated by crosses, coloured in the appriximate colour perceived by a human.
Human (CIE) | 3 cone reptile | 4 cone reptile | |
---|---|---|---|
Cone Excitation | |||
Colour Coordinate | ( 0.28 ; 0.3 ) | ( 0.33 ; 0.45 ) | ( 0.23 ; 0.26 ; 0.35 ) |
CCT | 9000 Kelvin | 6400 Kelvin | 6500 Kelvin |
distance | 0.11 | 0.083 | |
colour space | 3-D-graph not implemented yet |
Vitamin D3 Analysis
Vitamin D3 is produced by UVB radiation around 300 nm. 7DHC/ProD3 present in the skin is converted to PreD3 when absorbing an UV photon. PreD3 can be converted back to ProD3, to Lumisterol, or to Tachysterol when absorbing another UV photon or can be converted to Vitamin D3 in a warm environment.
This process prevents any overdose of vitamin D3 from UV radiation with a spectrum similar to sunlight. As a comparison the solar spectra at 20°(id:14) and at 85°(id:21) solar angle are shown.
The ratio of the two solarmeters 6.2 (UVB) and 6.5 (UV index) readings has proven a useful and very simply number to acess the spectral shape in the vitamin-d3-active region.
Effective Irradiances
Effective irradiances are calculated for all ranges, actionspectra and radiometers currently present in this database.
The calculation method is a numerical implementation (Simpson's rule) of the formula
To learn more about calculating effective irradiances and radiometers I recommend this excellent report on UVB meters: Characterizing the Performance of Integral Measuring UV-Meters (pdf).
The numbers in the following tables can also be used to estimate certain (effective) irradiances from radiomer readings. Example: If the database lists
- range: UVB (US) = 13.8 µW/cm²
- radiometer: Solarmeter 6.2 = 19.6 µW/cm²
total ( 0 nm - 0 nm) 910 µW/cm² = 9.1 W/m² UVC ( 0 nm - 280 nm) 0 µW/cm² = 0 W/m² non-terrestrial ( 0 nm - 290 nm) 0 µW/cm² = 0 W/m² total2 ( 250 nm - 880 nm) 910 µW/cm² = 9.1 W/m² UVB (EU) ( 280 nm - 315 nm) 25.5 µW/cm² = 0.255 W/m² UVB (US) ( 280 nm - 320 nm) 46.6 µW/cm² = 0.466 W/m² UVA+B ( 280 nm - 380 nm) 302 µW/cm² = 3.02 W/m² Solar UVB ( 290 nm - 315 nm) 25.5 µW/cm² = 0.255 W/m² UVA D3 regulating ( 315 nm - 335 nm) 111 µW/cm² = 1.11 W/m² UVA (EU) ( 315 nm - 380 nm) 277 µW/cm² = 2.77 W/m² UVA2 (medical definition) ( 320 nm - 340 nm) 126 µW/cm² = 1.26 W/m² UVA (US) ( 320 nm - 380 nm) 256 µW/cm² = 2.56 W/m² UVA1 (variant) ( 335 nm - 380 nm) 165 µW/cm² = 1.65 W/m² UVA1 (medical) ( 340 nm - 400 nm) 137 µW/cm² = 1.37 W/m² vis. UVA ( 350 nm - 380 nm) 66.4 µW/cm² = 0.664 W/m² VIS Rep3 ( 350 nm - 600 nm) 533 µW/cm² = 5.33 W/m² VIS Rep4 ( 350 nm - 700 nm) 645 µW/cm² = 6.45 W/m² purple ( 380 nm - 420 nm) 55 µW/cm² = 0.55 W/m² VIS ( 380 nm - 780 nm) 605 µW/cm² = 6.05 W/m² VIS2 ( 400 nm - 680 nm) 556 µW/cm² = 5.56 W/m² PAR ( 400 nm - 700 nm) 570 µW/cm² = 5.7 W/m² tmp ( 400 nm - 1100 nm) 599 µW/cm² = 5.99 W/m² blue ( 420 nm - 490 nm) 186 µW/cm² = 1.86 W/m² green ( 490 nm - 575 nm) 176 µW/cm² = 1.76 W/m² yellow ( 575 nm - 585 nm) 29.6 µW/cm² = 0.296 W/m² orange ( 585 nm - 650 nm) 84.4 µW/cm² = 0.844 W/m² red ( 650 nm - 780 nm) 73.2 µW/cm² = 0.732 W/m² IRA ( 700 nm - 1400 nm) 28.7 µW/cm² = 0.287 W/m² IR2 ( 720 nm - 1100 nm) 18.6 µW/cm² = 0.186 W/m² IRB ( 1400 nm - 3000 nm) 0 µW/cm² = 0 W/m²
Erythema 1.27 UV-Index Pyrimidine dimerization of DNA 15.9 µW/cm² Photoceratitis 2 µW/cm² Photoconjunctivitis 0.0331 µW/cm² DNA Damage 0.112 Vitamin D3 5.21 µW/cm² Photosynthesis 404 µW/cm² Luminosity 1530 lx Human L-Cone 223 µW/cm² Human M-Cone 201 µW/cm² Human S-Cone 158 µW/cm² CIE X 200 µW/cm² CIE Y 212 µW/cm² CIE Z 291 µW/cm² PAR 2760000 mol photons Extinction preD3 47.6 e-3*m²/mol Extinction Tachysterol 175 e-3*m²/mol Exctincition PreD3 24000 m²/mol Extinction Lumisterol 4.28 m²/mol Exctincition Tachysterol 275000 m²/mol Extinction 7DHC 3.71 m²/mol L-Cone 183 µW/cm² M-Cone 206 µW/cm² S-Cone 279 µW/cm² U-Cone 135 µW/cm² UVR - ICNIRP 2004 0.877 Rel Biol Eff Melatonin Supression 214 µW/cm² Blue Light Hazard 178 µW/cm² (116 µW/cm² per 1000 lx) CIE 174:2006 PreVit D3 5.6 µW/cm² Lumen Reptil 1780 "pseudo-lx" Vitamin D3 Degradation 9.17 µW/cm² Actinic UV 0.875 µW/cm² (5.72 mW/klm) Exctincition Lumisterol 7160 m²/mol Exctincition 7DHC 4980 m²/mol Exctincition Toxisterols 5090 m²/mol
Solarmeter 6.2 (UVB, pre 2010) 61.2 µW/cm² Solarmeter 6.5 (UV-Index, pre 2010) 1.56 Leybold UVB 41.9 µW/cm² Leybold UVA 186 µW/cm² Leybold UVC 0.00199 µW/cm² DeltaOhm UVB 130 µW/cm² DeltaOhm UVC 14.2 µW/cm² Vernier UVB 10.6 µW/cm² Vernier UVA 199 µW/cm² Gröbel UVA 234 µW/cm² Gröbel UVB 18.8 µW/cm² Gröbel UVC -0.0142 µW/cm² Luxmeter 1590 lx Solarmeter 6.4 (D3) 4.89 IU/min UVX-31 142 µW/cm² IL UVB 0.0271 µW/cm² IL UVA 202 µW/cm² Solarmeter 6.5 (UVI, post 2010) 1.36 UV-Index Solarmeter 6.2 (UVB, post 2010) 44.4 µW/cm² (Solarmeter Ratio = 32.7) Solarmeter AlGaN 6.5 UVI sensor 21.6 UV Index GenUV 7.1 UV-Index 1.32 UV-Index Solarmeter 10.0 (Global Power) (manuf.) 7.31 W/m² Solarmeter 4.0 (UVA) 2.57 mW/cm² LS122 (manuf.) 3.48E-5 W/m² ISM400 (first guess) 4.26 W/m² LS122 (assumption) 0.191 W/m² ISM400_new 3.42 W/m² Solarmeter 10.0 (Global Power) (assumption) 6.29 W/m²