Reptile Lamp Database

Spectrum 766: SW61 Edit
Delete

Full Spectrum

Measurement

Brand MegaRay
Mac Industries Inc http://www.reptileuv.com/
Lamp Product Zone 3 T5 Fluorescent Lamp 24W
Lamp ID SW61 (04/2023)
for lamp test provided by SP Lighting
Spectrometer USB2000+
Ballast - no ballast or default/unknown ballast -
Reflector
Distance 10 cm
Age 100 hours
Originator (measurement) Sarina Wunderlich
Database entry created: Sarina Wunderlich 5/Feb/2024 ; updated: Sarina Wunderlich 5/Feb/2024

Colorimetry

Colorimetry is the science to describe physically the human color perception. The wavelength range 380 nm - 780 nm is visible to humans and detected by three different photoreceptors. Many Reptiles see the range 350 nm - 800 nm and have an additional UV photoreceptor in their retina.

Spectrum in the visible wavelength range

Whereas a spectrometer measures the intensity in every tiny wavelength interval resulting in thousands of individual intensities, the human eye only measures three intensities detected by the three cones. The same is true for the reptile eye with usually three or four photoreceptors. Effectively the detailled spectrum displayed above reduces to a much compacter bar graph displayed below. The photoreceptor sensitivites from these L-Cone, M-Cone, S-Cone, and U-Cone are used, they are chosen as an average of measured reptile photoreceptor sensitivity curves. The bar graph also shows as reference the intensity seen by the three or four photoreceptors for average sunlight (id 1).

From these three numbers the colour coordinate and the correlated colour temperature for humans are calculated using the CIE standard method. I adapted this concept to a "3 cone reptile (M,S,U)" and a "4 cone reptile (L,M,S,U)". I am sure, that this adaption to other colour spaces makes sense mathematically and this is also done in scientific research regarding colour vision of animals, however I have not seen calculation of colour temperatures for other animals in the scientific literature. Even if it is hypothetical, at least this shows, how arbitrary the colour temperature is, and that the colour temperature calculated for humans does not apply to reptiles. The colour spaces also show the colour coordinates of different phases of daylight ((ids 1, 338451, 511513 ), indicated by crosses, coloured in the appriximate colour perceived by a human.

Human (CIE) 3 cone reptile 4 cone reptile
Cone Excitation
Colour Coordinate ( 0.29 ; 0.31 ) ( 0.3 ; 0.44 ) ( 0.23 ; 0.23 ; 0.34 )
CCT 8300 Kelvin 7300 Kelvin 6800 Kelvin
distance 0.1 0.078
colour space 3-D-graph not implemented yet

Vitamin D3 Analysis

Vitamin D3 is produced by UVB radiation around 300 nm. 7DHC/ProD3 present in the skin is converted to PreD3 when absorbing an UV photon. PreD3 can be converted back to ProD3, to Lumisterol, or to Tachysterol when absorbing another UV photon or can be converted to Vitamin D3 in a warm environment.

This process prevents any overdose of vitamin D3 from UV radiation with a spectrum similar to sunlight. As a comparison the solar spectra at 20°(id:14) and at 85°(id:21) solar angle are shown.

Spectrum in the vitamin D3 active wavelength range

The ratio of the two solarmeters 6.2 (UVB) and 6.5 (UV index) readings has proven a useful and very simply number to acess the spectral shape in the vitamin-d3-active region.

Effective Irradiances

Effective irradiances are calculated for all ranges, actionspectra and radiometers currently present in this database.

The calculation method is a numerical implementation (Simpson's rule) of the formula

To learn more about calculating effective irradiances and radiometers I recommend this excellent report on UVB meters: Characterizing the Performance of Integral Measuring UV-Meters (pdf).

The numbers in the following tables can also be used to estimate certain (effective) irradiances from radiomer readings. Example: If the database lists

  • range: UVB (US) = 13.8 µW/cm²
  • radiometer: Solarmeter 6.2 = 19.6 µW/cm²
then any Solarmeter 6.2 reading multiplied with 0.7 (0.7=13.8/19.6) is an estimate of UVB irradiance for this specific lamp. If you do so, always make sure, that the calculated (effective) irradiance is valid. The calculated value is not valid, if the lamp's spectrum is not measured in the relevant range.

Ranges
total ( 0 nm - 0 nm) 6250 µW/cm² = 62.5 W/m²
UVC ( 0 nm - 280 nm) 296 µW/cm² = 2.96 W/m²
non-terrestrial ( 0 nm - 290 nm) 300 µW/cm² = 3 W/m²
total2 ( 250 nm - 880 nm) 5970 µW/cm² = 59.7 W/m²
UVB (EU) ( 280 nm - 315 nm) 456 µW/cm² = 4.56 W/m²
UVB (US) ( 280 nm - 320 nm) 782 µW/cm² = 7.82 W/m²
UVA+B ( 280 nm - 380 nm) 3150 µW/cm² = 31.5 W/m²
Solar UVB ( 290 nm - 315 nm) 452 µW/cm² = 4.52 W/m²
UVA D3 regulating ( 315 nm - 335 nm) 1350 µW/cm² = 13.5 W/m²
UVA (EU) ( 315 nm - 380 nm) 2690 µW/cm² = 26.9 W/m²
UVA2 (medical definition) ( 320 nm - 340 nm) 1350 µW/cm² = 13.5 W/m²
UVA (US) ( 320 nm - 380 nm) 2370 µW/cm² = 23.7 W/m²
UVA1 (variant) ( 335 nm - 380 nm) 1340 µW/cm² = 13.4 W/m²
UVA1 (medical) ( 340 nm - 400 nm) 1050 µW/cm² = 10.5 W/m²
vis. UVA ( 350 nm - 380 nm) 455 µW/cm² = 4.55 W/m²
VIS Rep3 ( 350 nm - 600 nm) 2580 µW/cm² = 25.8 W/m²
VIS Rep4 ( 350 nm - 700 nm) 3120 µW/cm² = 31.2 W/m²
purple ( 380 nm - 420 nm) 272 µW/cm² = 2.72 W/m²
VIS ( 380 nm - 780 nm) 2780 µW/cm² = 27.8 W/m²
VIS2 ( 400 nm - 680 nm) 2560 µW/cm² = 25.6 W/m²
PAR ( 400 nm - 700 nm) 2630 µW/cm² = 26.3 W/m²
tmp ( 400 nm - 1100 nm) 2770 µW/cm² = 27.7 W/m²
blue ( 420 nm - 490 nm) 817 µW/cm² = 8.17 W/m²
green ( 490 nm - 575 nm) 803 µW/cm² = 8.03 W/m²
yellow ( 575 nm - 585 nm) 145 µW/cm² = 1.45 W/m²
orange ( 585 nm - 650 nm) 391 µW/cm² = 3.91 W/m²
red ( 650 nm - 780 nm) 347 µW/cm² = 3.47 W/m²
IRA ( 700 nm - 1400 nm) 142 µW/cm² = 1.42 W/m²
IR2 ( 720 nm - 1100 nm) 96.8 µW/cm² = 0.968 W/m²
IRB ( 1400 nm - 3000 nm) 0 µW/cm² = 0 W/m²
Actionspectra
Erythema 31.9 UV-Index
Pyrimidine dimerization of DNA 286 µW/cm²
Photoceratitis 47.9 µW/cm²
Photoconjunctivitis 45.8 µW/cm²
DNA Damage 69.3
Vitamin D3 112 µW/cm²
Photosynthesis 1850 µW/cm²
Luminosity 7090 lx
Human L-Cone 1040 µW/cm²
Human M-Cone 925 µW/cm²
Human S-Cone 703 µW/cm²
CIE X 929 µW/cm²
CIE Y 987 µW/cm²
CIE Z 1290 µW/cm²
PAR 12900000 mol photons
Extinction preD3 1300 e-3*m²/mol
Extinction Tachysterol 3460 e-3*m²/mol
Exctincition PreD3 680000 m²/mol
Extinction Lumisterol 403 m²/mol
Exctincition Tachysterol 4660000 m²/mol
Extinction 7DHC 329 m²/mol
L-Cone 855 µW/cm²
M-Cone 868 µW/cm²
S-Cone 1280 µW/cm²
U-Cone 740 µW/cm²
UVR - ICNIRP 2004 56.7 Rel Biol Eff
Melatonin Supression 938 µW/cm²
Blue Light Hazard 815 µW/cm² (115 µW/cm² per 1000 lx)
CIE 174:2006 PreVit D3 123 µW/cm²
Lumen Reptil 8230 "pseudo-lx"
Vitamin D3 Degradation 154 µW/cm²
Actinic UV 56.4 µW/cm² (79.6 mW/klm)
Exctincition Lumisterol 326000 m²/mol
Exctincition 7DHC 301000 m²/mol
Exctincition Toxisterols 326000 m²/mol
Broadbandmeters
Solarmeter 6.2 (UVB, pre 2010) 959 µW/cm²
Solarmeter 6.5 (UV-Index, pre 2010) 33.7
Leybold UVB 667 µW/cm²
Leybold UVA 1650 µW/cm²
Leybold UVC 28.7 µW/cm²
DeltaOhm UVB 1660 µW/cm²
DeltaOhm UVC 272 µW/cm²
Vernier UVB 212 µW/cm²
Vernier UVA 2070 µW/cm²
Gröbel UVA 2240 µW/cm²
Gröbel UVB 325 µW/cm²
Gröbel UVC 39.3 µW/cm²
Luxmeter 7370 lx
Solarmeter 6.4 (D3) 105 IU/min
UVX-31 1780 µW/cm²
IL UVB 0.398 µW/cm²
IL UVA 1820 µW/cm²
Solarmeter 6.5 (UVI, post 2010) 28.8 UV-Index
Solarmeter 6.2 (UVB, post 2010) 649 µW/cm² (Solarmeter Ratio = 22.5)
Solarmeter AlGaN 6.5 UVI sensor 398 UV Index
GenUV 7.1 UV-Index 24 UV-Index
Solarmeter 10.0 (Global Power) (manuf.) 41 W/m²
Solarmeter 4.0 (UVA) 23.1 mW/cm²
LS122 (manuf.) 0.0502 W/m²
ISM400 (first guess) 20.7 W/m²
LS122 (assumption) 0.947 W/m²
ISM400_new 16.6 W/m²
Solarmeter 10.0 (Global Power) (assumption) 32.1 W/m²