CCT:1019 4407K
CRI DC:1017 4,49E-3
CRI R01:1002 77,7 (4407K)
CRI R02:1003 87,5 (4407K)
CRI R03:1004 94,1 (4407K)
CRI R04:1005 77,3 (4407K)
CRI R05:1006 77,6 (4407K)
CRI R06:1007 82,5 (4407K)
CRI R07:1008 85,7 (4407K)
CRI R08:1009 62,1 (4407K)
CRI R09:1010 -0,7 (4407K)
CRI R10:1011 69,6 (4407K)
CRI R11:1012 74,6 (4407K)
CRI R12:1013 51,9 (4407K)
CRI R13:1014 80,2 (4407K)
CRI R14:1015 96,8 (4407K)
CRI R15:1016 71,0 (4407K)
CRI Ra:1001 80,6 (4407K)
DC<5.4E-3:1018 true
X:1022 17,97
Y:1023 18,49
Z:1024 12,61
x:1026 0,3662
y:1027 0,3768
z:1028 0,2570
Spectrum 720: SW81 Edit
DeleteMeasurement
Brand |
other other |
---|---|
Lamp Product |
XXXLutz LED Panel |
Lamp ID |
SW81 (07/2021) |
Spectrometer | USB2000+ |
Ballast | - no ballast or default/unknown ballast - |
Reflector | |
Distance | 10 cm |
Age | 2 hours |
Originator (measurement) | Sarina Wunderlich |
Colorimetry
Colorimetry is the science to describe physically the human color perception. The wavelength range 380 nm - 780 nm is visible to humans and detected by three different photoreceptors. Many Reptiles see the range 350 nm - 800 nm and have an additional UV photoreceptor in their retina.
Whereas a spectrometer measures the intensity in every tiny wavelength interval resulting in thousands of individual intensities, the human eye only measures three intensities detected by the three cones. The same is true for the reptile eye with usually three or four photoreceptors. Effectively the detailled spectrum displayed above reduces to a much compacter bar graph displayed below. The photoreceptor sensitivites from these L-Cone, M-Cone, S-Cone, and U-Cone are used, they are chosen as an average of measured reptile photoreceptor sensitivity curves. The bar graph also shows as reference the intensity seen by the three or four photoreceptors for average sunlight (id 1).
From these three numbers the colour coordinate and the correlated colour temperature for humans are calculated using the CIE standard method. I adapted this concept to a "3 cone reptile (M,S,U)" and a "4 cone reptile (L,M,S,U)". I am sure, that this adaption to other colour spaces makes sense mathematically and this is also done in scientific research regarding colour vision of animals, however I have not seen calculation of colour temperatures for other animals in the scientific literature. Even if it is hypothetical, at least this shows, how arbitrary the colour temperature is, and that the colour temperature calculated for humans does not apply to reptiles. The colour spaces also show the colour coordinates of different phases of daylight ((ids 1, 338 – 451, 511 – 513 ), indicated by crosses, coloured in the appriximate colour perceived by a human.
Human (CIE) | 3 cone reptile | 4 cone reptile | |
---|---|---|---|
Cone Excitation | |||
Colour Coordinate | ( 0.37 ; 0.38 ) | ( 0.57 ; 0.42 ) | ( 0.44 ; 0.32 ; 0.24 ) |
CCT | 4400 Kelvin | 3300 Kelvin | 3500 Kelvin |
distance | 0.12 | 0.065 | |
colour space | 3-D-graph not implemented yet |
Vitamin D3 Analysis
Vitamin D3 is produced by UVB radiation around 300 nm. 7DHC/ProD3 present in the skin is converted to PreD3 when absorbing an UV photon. PreD3 can be converted back to ProD3, to Lumisterol, or to Tachysterol when absorbing another UV photon or can be converted to Vitamin D3 in a warm environment.
This process prevents any overdose of vitamin D3 from UV radiation with a spectrum similar to sunlight. As a comparison the solar spectra at 20°(id:14) and at 85°(id:21) solar angle are shown.
The ratio of the two solarmeters 6.2 (UVB) and 6.5 (UV index) readings has proven a useful and very simply number to acess the spectral shape in the vitamin-d3-active region.
Effective Irradiances
Effective irradiances are calculated for all ranges, actionspectra and radiometers currently present in this database.
The calculation method is a numerical implementation (Simpson's rule) of the formula
To learn more about calculating effective irradiances and radiometers I recommend this excellent report on UVB meters: Characterizing the Performance of Integral Measuring UV-Meters (pdf).
The numbers in the following tables can also be used to estimate certain (effective) irradiances from radiomer readings. Example: If the database lists
- range: UVB (US) = 13.8 µW/cm²
- radiometer: Solarmeter 6.2 = 19.6 µW/cm²
total ( 0 nm - 0 nm) 4100 µW/cm² = 41 W/m² UVC ( 0 nm - 280 nm) 0 µW/cm² = 0 W/m² non-terrestrial ( 0 nm - 290 nm) 0 µW/cm² = 0 W/m² total2 ( 250 nm - 880 nm) 4100 µW/cm² = 41 W/m² UVB (EU) ( 280 nm - 315 nm) 1.57 µW/cm² = 0.0157 W/m² UVB (US) ( 280 nm - 320 nm) 2 µW/cm² = 0.02 W/m² UVA+B ( 280 nm - 380 nm) 5.89 µW/cm² = 0.0589 W/m² Solar UVB ( 290 nm - 315 nm) 1.57 µW/cm² = 0.0157 W/m² UVA D3 regulating ( 315 nm - 335 nm) 1.61 µW/cm² = 0.0161 W/m² UVA (EU) ( 315 nm - 380 nm) 4.32 µW/cm² = 0.0432 W/m² UVA2 (medical definition) ( 320 nm - 340 nm) 1.42 µW/cm² = 0.0142 W/m² UVA (US) ( 320 nm - 380 nm) 3.9 µW/cm² = 0.039 W/m² UVA1 (variant) ( 335 nm - 380 nm) 2.71 µW/cm² = 0.0271 W/m² UVA1 (medical) ( 340 nm - 400 nm) 3.67 µW/cm² = 0.0367 W/m² vis. UVA ( 350 nm - 380 nm) 1.85 µW/cm² = 0.0185 W/m² VIS Rep3 ( 350 nm - 600 nm) 2860 µW/cm² = 28.6 W/m² VIS Rep4 ( 350 nm - 700 nm) 4000 µW/cm² = 40 W/m² purple ( 380 nm - 420 nm) 5.16 µW/cm² = 0.0516 W/m² VIS ( 380 nm - 780 nm) 4070 µW/cm² = 40.7 W/m² VIS2 ( 400 nm - 680 nm) 3920 µW/cm² = 39.2 W/m² PAR ( 400 nm - 700 nm) 3990 µW/cm² = 39.9 W/m² tmp ( 400 nm - 1100 nm) 4090 µW/cm² = 40.9 W/m² blue ( 420 nm - 490 nm) 851 µW/cm² = 8.51 W/m² green ( 490 nm - 575 nm) 1440 µW/cm² = 14.4 W/m² yellow ( 575 nm - 585 nm) 228 µW/cm² = 2.28 W/m² orange ( 585 nm - 650 nm) 1170 µW/cm² = 11.7 W/m² red ( 650 nm - 780 nm) 376 µW/cm² = 3.76 W/m² IRA ( 700 nm - 1400 nm) 97.3 µW/cm² = 0.973 W/m² IR2 ( 720 nm - 1100 nm) 61.5 µW/cm² = 0.615 W/m² IRB ( 1400 nm - 3000 nm) 0 µW/cm² = 0 W/m²
Erythema 0.125 UV-Index Pyrimidine dimerization of DNA 1.13 µW/cm² Photoceratitis 0.193 µW/cm² Photoconjunctivitis 0.00332 µW/cm² DNA Damage 0.0108 Vitamin D3 0.629 µW/cm² Photosynthesis 2590 µW/cm² Luminosity 14300 lx Human L-Cone 2170 µW/cm² Human M-Cone 1720 µW/cm² Human S-Cone 685 µW/cm² CIE X 1940 µW/cm² CIE Y 2000 µW/cm² CIE Z 1360 µW/cm² PAR 18500000 mol photons Extinction preD3 2.72 e-3*m²/mol Extinction Tachysterol 9.03 e-3*m²/mol Exctincition PreD3 1220 m²/mol Extinction Lumisterol 0.557 m²/mol Exctincition Tachysterol 11900 m²/mol Extinction 7DHC 0.343 m²/mol L-Cone 1880 µW/cm² M-Cone 1380 µW/cm² S-Cone 1020 µW/cm² U-Cone 19.1 µW/cm² UVR - ICNIRP 2004 0.107 Rel Biol Eff Melatonin Supression 1010 µW/cm² Blue Light Hazard 712 µW/cm² (49.8 µW/cm² per 1000 lx) CIE 174:2006 PreVit D3 0.718 µW/cm² Lumen Reptil 11100 "pseudo-lx" Vitamin D3 Degradation 0.428 µW/cm² Actinic UV 0.102 µW/cm² (0.0716 mW/klm) Exctincition Lumisterol 749 m²/mol Exctincition 7DHC 452 m²/mol Exctincition Toxisterols 160 m²/mol
Solarmeter 6.2 (UVB, pre 2010) 2.27 µW/cm² Solarmeter 6.5 (UV-Index, pre 2010) 0.175 Leybold UVB 1.8 µW/cm² Leybold UVA 2.77 µW/cm² Leybold UVC 0 µW/cm² DeltaOhm UVB 2.76 µW/cm² DeltaOhm UVC 0.407 µW/cm² Vernier UVB 0.863 µW/cm² Vernier UVA 2.93 µW/cm² Gröbel UVA 3.62 µW/cm² Gröbel UVB 1.12 µW/cm² Gröbel UVC 0.000855 µW/cm² Luxmeter 14500 lx Solarmeter 6.4 (D3) 0.547 IU/min UVX-31 3.09 µW/cm² IL UVB 0.000985 µW/cm² IL UVA 3.31 µW/cm² Solarmeter 6.5 (UVI, post 2010) 0.14 UV-Index Solarmeter 6.2 (UVB, post 2010) 1.33 µW/cm² (Solarmeter Ratio = 9.54) Solarmeter AlGaN 6.5 UVI sensor 1.42 UV Index GenUV 7.1 UV-Index 0.0704 UV-Index Solarmeter 10.0 (Global Power) (manuf.) 45.3 W/m² Solarmeter 4.0 (UVA) 0.0506 mW/cm² LS122 (manuf.) 0.0359 W/m² ISM400 (first guess) 32.9 W/m² LS122 (assumption) 1.82 W/m² ISM400_new 26.8 W/m² Solarmeter 10.0 (Global Power) (assumption) 44.9 W/m²