CCT:1019 2863K
CRI DC:1017 1,93E-3
CRI R01:1002 77,1 (2863K)
CRI R02:1003 88,6 (2863K)
CRI R03:1004 96,9 (2863K)
CRI R04:1005 77,5 (2863K)
CRI R05:1006 78,0 (2863K)
CRI R06:1007 87,3 (2863K)
CRI R07:1008 80,8 (2863K)
CRI R08:1009 53,5 (2863K)
CRI R09:1010 -3,6 (2863K)
CRI R10:1011 74,5 (2863K)
CRI R11:1012 75,7 (2863K)
CRI R12:1013 64,9 (2863K)
CRI R13:1014 79,5 (2863K)
CRI R14:1015 98,8 (2863K)
CRI R15:1016 68,7 (2863K)
CRI Ra:1001 80,0 (2863K)
DC<5.4E-3:1018 true
X:1022 18,42
Y:1023 16,92
Z:1024 5,59
x:1026 0,4501
y:1027 0,4132
z:1028 0,1367
Spectrum 715: SW81 Edit
DeleteMeasurement
Brand |
other other |
---|---|
Lamp Product |
XXXLutz LED Panel |
Lamp ID |
SW81 (07/2021) |
Spectrometer | USB2000+ |
Ballast | - no ballast or default/unknown ballast - |
Reflector | |
Distance | 10 cm |
Age | 2 hours |
Originator (measurement) | Sarina Wunderlich |
Colorimetry
Colorimetry is the science to describe physically the human color perception. The wavelength range 380 nm - 780 nm is visible to humans and detected by three different photoreceptors. Many Reptiles see the range 350 nm - 800 nm and have an additional UV photoreceptor in their retina.
Whereas a spectrometer measures the intensity in every tiny wavelength interval resulting in thousands of individual intensities, the human eye only measures three intensities detected by the three cones. The same is true for the reptile eye with usually three or four photoreceptors. Effectively the detailled spectrum displayed above reduces to a much compacter bar graph displayed below. The photoreceptor sensitivites from these L-Cone, M-Cone, S-Cone, and U-Cone are used, they are chosen as an average of measured reptile photoreceptor sensitivity curves. The bar graph also shows as reference the intensity seen by the three or four photoreceptors for average sunlight (id 1).
From these three numbers the colour coordinate and the correlated colour temperature for humans are calculated using the CIE standard method. I adapted this concept to a "3 cone reptile (M,S,U)" and a "4 cone reptile (L,M,S,U)". I am sure, that this adaption to other colour spaces makes sense mathematically and this is also done in scientific research regarding colour vision of animals, however I have not seen calculation of colour temperatures for other animals in the scientific literature. Even if it is hypothetical, at least this shows, how arbitrary the colour temperature is, and that the colour temperature calculated for humans does not apply to reptiles. The colour spaces also show the colour coordinates of different phases of daylight ((ids 1, 338 – 451, 511 – 513 ), indicated by crosses, coloured in the appriximate colour perceived by a human.
Human (CIE) | 3 cone reptile | 4 cone reptile | |
---|---|---|---|
Cone Excitation | |||
Colour Coordinate | ( 0.45 ; 0.41 ) | ( 0.65 ; 0.34 ) | ( 0.59 ; 0.27 ; 0.14 ) |
CCT | 2900 Kelvin | 2700 Kelvin | 2500 Kelvin |
distance | 0.068 | 0.029 | |
colour space | 3-D-graph not implemented yet |
Vitamin D3 Analysis
Vitamin D3 is produced by UVB radiation around 300 nm. 7DHC/ProD3 present in the skin is converted to PreD3 when absorbing an UV photon. PreD3 can be converted back to ProD3, to Lumisterol, or to Tachysterol when absorbing another UV photon or can be converted to Vitamin D3 in a warm environment.
This process prevents any overdose of vitamin D3 from UV radiation with a spectrum similar to sunlight. As a comparison the solar spectra at 20°(id:14) and at 85°(id:21) solar angle are shown.
The ratio of the two solarmeters 6.2 (UVB) and 6.5 (UV index) readings has proven a useful and very simply number to acess the spectral shape in the vitamin-d3-active region.
Effective Irradiances
Effective irradiances are calculated for all ranges, actionspectra and radiometers currently present in this database.
The calculation method is a numerical implementation (Simpson's rule) of the formula
To learn more about calculating effective irradiances and radiometers I recommend this excellent report on UVB meters: Characterizing the Performance of Integral Measuring UV-Meters (pdf).
The numbers in the following tables can also be used to estimate certain (effective) irradiances from radiomer readings. Example: If the database lists
- range: UVB (US) = 13.8 µW/cm²
- radiometer: Solarmeter 6.2 = 19.6 µW/cm²
total ( 0 nm - 0 nm) 3730 µW/cm² = 37.3 W/m² UVC ( 0 nm - 280 nm) 13.5 µW/cm² = 0.135 W/m² non-terrestrial ( 0 nm - 290 nm) 13.5 µW/cm² = 0.135 W/m² total2 ( 250 nm - 880 nm) 3710 µW/cm² = 37.1 W/m² UVB (EU) ( 280 nm - 315 nm) 1.19 µW/cm² = 0.0119 W/m² UVB (US) ( 280 nm - 320 nm) 1.65 µW/cm² = 0.0165 W/m² UVA+B ( 280 nm - 380 nm) 4.71 µW/cm² = 0.0471 W/m² Solar UVB ( 290 nm - 315 nm) 1.19 µW/cm² = 0.0119 W/m² UVA D3 regulating ( 315 nm - 335 nm) 1.4 µW/cm² = 0.014 W/m² UVA (EU) ( 315 nm - 380 nm) 3.52 µW/cm² = 0.0352 W/m² UVA2 (medical definition) ( 320 nm - 340 nm) 1.15 µW/cm² = 0.0115 W/m² UVA (US) ( 320 nm - 380 nm) 3.06 µW/cm² = 0.0306 W/m² UVA1 (variant) ( 335 nm - 380 nm) 2.12 µW/cm² = 0.0212 W/m² UVA1 (medical) ( 340 nm - 400 nm) 2.79 µW/cm² = 0.0279 W/m² vis. UVA ( 350 nm - 380 nm) 1.45 µW/cm² = 0.0145 W/m² VIS Rep3 ( 350 nm - 600 nm) 2070 µW/cm² = 20.7 W/m² VIS Rep4 ( 350 nm - 700 nm) 3590 µW/cm² = 35.9 W/m² purple ( 380 nm - 420 nm) 2.89 µW/cm² = 0.0289 W/m² VIS ( 380 nm - 780 nm) 3690 µW/cm² = 36.9 W/m² VIS2 ( 400 nm - 680 nm) 3480 µW/cm² = 34.8 W/m² PAR ( 400 nm - 700 nm) 3580 µW/cm² = 35.8 W/m² tmp ( 400 nm - 1100 nm) 3700 µW/cm² = 37 W/m² blue ( 420 nm - 490 nm) 370 µW/cm² = 3.7 W/m² green ( 490 nm - 575 nm) 1090 µW/cm² = 10.9 W/m² yellow ( 575 nm - 585 nm) 232 µW/cm² = 2.32 W/m² orange ( 585 nm - 650 nm) 1480 µW/cm² = 14.8 W/m² red ( 650 nm - 780 nm) 512 µW/cm² = 5.12 W/m² IRA ( 700 nm - 1400 nm) 118 µW/cm² = 1.18 W/m² IR2 ( 720 nm - 1100 nm) 70.3 µW/cm² = 0.703 W/m² IRB ( 1400 nm - 3000 nm) 0 µW/cm² = 0 W/m²
Erythema 0.0894 UV-Index Pyrimidine dimerization of DNA 0.865 µW/cm² Photoceratitis 0.138 µW/cm² Photoconjunctivitis 0.0023 µW/cm² DNA Damage 0.0074 Vitamin D3 0.454 µW/cm² Photosynthesis 2280 µW/cm² Luminosity 13100 lx Human L-Cone 2060 µW/cm² Human M-Cone 1420 µW/cm² Human S-Cone 301 µW/cm² CIE X 1990 µW/cm² CIE Y 1830 µW/cm² CIE Z 604 µW/cm² PAR 17400000 mol photons Extinction preD3 2.08 e-3*m²/mol Extinction Tachysterol 6.92 e-3*m²/mol Exctincition PreD3 929 m²/mol Extinction Lumisterol 0.386 m²/mol Exctincition Tachysterol 9150 m²/mol Extinction 7DHC 0.23 m²/mol L-Cone 1900 µW/cm² M-Cone 848 µW/cm² S-Cone 437 µW/cm² U-Cone 9.96 µW/cm² UVR - ICNIRP 2004 0.0729 Rel Biol Eff Melatonin Supression 490 µW/cm² Blue Light Hazard 318 µW/cm² (24.2 µW/cm² per 1000 lx) CIE 174:2006 PreVit D3 0.521 µW/cm² Lumen Reptil 8800 "pseudo-lx" Vitamin D3 Degradation 0.335 µW/cm² Actinic UV 0.0705 µW/cm² (0.0538 mW/klm) Exctincition Lumisterol 533 m²/mol Exctincition 7DHC 305 m²/mol Exctincition Toxisterols 126 m²/mol
Solarmeter 6.2 (UVB, pre 2010) 1.82 µW/cm² Solarmeter 6.5 (UV-Index, pre 2010) 0.127 Leybold UVB 1.42 µW/cm² Leybold UVA 2.18 µW/cm² Leybold UVC 0 µW/cm² DeltaOhm UVB 2.26 µW/cm² DeltaOhm UVC 0.328 µW/cm² Vernier UVB 0.658 µW/cm² Vernier UVA 2.37 µW/cm² Gröbel UVA 2.9 µW/cm² Gröbel UVB 0.858 µW/cm² Gröbel UVC 0.000475 µW/cm² Luxmeter 12800 lx Solarmeter 6.4 (D3) 0.397 IU/min UVX-31 2.51 µW/cm² IL UVB 0.000773 µW/cm² IL UVA 2.63 µW/cm² Solarmeter 6.5 (UVI, post 2010) 0.103 UV-Index Solarmeter 6.2 (UVB, post 2010) 1.08 µW/cm² (Solarmeter Ratio = 10.5) Solarmeter AlGaN 6.5 UVI sensor 1.08 UV Index GenUV 7.1 UV-Index 0.055 UV-Index Solarmeter 10.0 (Global Power) (manuf.) 44 W/m² Solarmeter 4.0 (UVA) 0.0399 mW/cm² LS122 (manuf.) 0.0246 W/m² ISM400 (first guess) 34.5 W/m² LS122 (assumption) 2.05 W/m² ISM400_new 28.9 W/m² Solarmeter 10.0 (Global Power) (assumption) 44.5 W/m²