Reptile Lamp Database

Spectrum 651: TG-HERMANN Edit
Delete

Full Spectrum

CCT:1019 4421K
CRI DC:1017 6.40E-3
CRI R01:1002 99.1 (4421K)
CRI R02:1003 98.1 (4421K)
CRI R03:1004 89.7 (4421K)
CRI R04:1005 95.1 (4421K)
CRI R05:1006 99.0 (4421K)
CRI R06:1007 96.5 (4421K)
CRI R07:1008 92.9 (4421K)
CRI R08:1009 88.3 (4421K)
CRI R09:1010 70.7 (4421K)
CRI R10:1011 90.6 (4421K)
CRI R11:1012 96.6 (4421K)
CRI R12:1013 95.5 (4421K)
CRI R13:1014 98.8 (4421K)
CRI R14:1015 93.3 (4421K)
CRI R15:1016 96.4 (4421K)
CRI Ra:1001 94.8 (4421K)

Measurement

Brand Enclosure Setup
Lamp Product Enclosure
Lamp ID TG-HERMANN (10/2022)
TG Juvenile Hermanns Setup
Spectrometer FLAME UV-Vis (E)
Ballast - no ballast or default/unknown ballast -
Reflector
Distance 35 cm
Age 100 hours
Originator (measurement) Thomas Griffiths
Database entry created: Thomas Griffiths (Tomaskas Ltd.) 23/Jan/2023 ; updated: Thomas Griffiths (Tomaskas Ltd.) 29/May/2023

Colorimetry

Colorimetry is the science to describe physically the human color perception. The wavelength range 380 nm - 780 nm is visible to humans and detected by three different photoreceptors. Many Reptiles see the range 350 nm - 800 nm and have an additional UV photoreceptor in their retina.

Spectrum in the visible wavelength range

Whereas a spectrometer measures the intensity in every tiny wavelength interval resulting in thousands of individual intensities, the human eye only measures three intensities detected by the three cones. The same is true for the reptile eye with usually three or four photoreceptors. Effectively the detailled spectrum displayed above reduces to a much compacter bar graph displayed below. The photoreceptor sensitivites from these L-Cone, M-Cone, S-Cone, and U-Cone are used, they are chosen as an average of measured reptile photoreceptor sensitivity curves. The bar graph also shows as reference the intensity seen by the three or four photoreceptors for average sunlight (id 1).

From these three numbers the colour coordinate and the correlated colour temperature for humans are calculated using the CIE standard method. I adapted this concept to a "3 cone reptile (M,S,U)" and a "4 cone reptile (L,M,S,U)". I am sure, that this adaption to other colour spaces makes sense mathematically and this is also done in scientific research regarding colour vision of animals, however I have not seen calculation of colour temperatures for other animals in the scientific literature. Even if it is hypothetical, at least this shows, how arbitrary the colour temperature is, and that the colour temperature calculated for humans does not apply to reptiles. The colour spaces also show the colour coordinates of different phases of daylight ((ids 1, 338451, 511513 ), indicated by crosses, coloured in the appriximate colour perceived by a human.

Human (CIE) 3 cone reptile 4 cone reptile
Cone Excitation
Colour Coordinate ( 0.36 ; 0.35 ) ( 0.4 ; 0.39 ) ( 0.33 ; 0.26 ; 0.26 )
CCT 4400 Kelvin 5100 Kelvin 4500 Kelvin
distance 0.053 0.043
colour space 3-D-graph not implemented yet

Vitamin D3 Analysis

Vitamin D3 is produced by UVB radiation around 300 nm. 7DHC/ProD3 present in the skin is converted to PreD3 when absorbing an UV photon. PreD3 can be converted back to ProD3, to Lumisterol, or to Tachysterol when absorbing another UV photon or can be converted to Vitamin D3 in a warm environment.

This process prevents any overdose of vitamin D3 from UV radiation with a spectrum similar to sunlight. As a comparison the solar spectra at 20°(id:14) and at 85°(id:21) solar angle are shown.

Spectrum in the vitamin D3 active wavelength range

The ratio of the two solarmeters 6.2 (UVB) and 6.5 (UV index) readings has proven a useful and very simply number to acess the spectral shape in the vitamin-d3-active region.

Effective Irradiances

Effective irradiances are calculated for all ranges, actionspectra and radiometers currently present in this database.

The calculation method is a numerical implementation (Simpson's rule) of the formula

To learn more about calculating effective irradiances and radiometers I recommend this excellent report on UVB meters: Characterizing the Performance of Integral Measuring UV-Meters (pdf).

The numbers in the following tables can also be used to estimate certain (effective) irradiances from radiomer readings. Example: If the database lists

  • range: UVB (US) = 13.8 µW/cm²
  • radiometer: Solarmeter 6.2 = 19.6 µW/cm²
then any Solarmeter 6.2 reading multiplied with 0.7 (0.7=13.8/19.6) is an estimate of UVB irradiance for this specific lamp. If you do so, always make sure, that the calculated (effective) irradiance is valid. The calculated value is not valid, if the lamp's spectrum is not measured in the relevant range.

Ranges
total ( 0 nm - 0 nm) 9160 µW/cm² = 91.6 W/m²
UVC ( 0 nm - 280 nm) 0 µW/cm² = 0 W/m²
non-terrestrial ( 0 nm - 290 nm) 0 µW/cm² = 0 W/m²
total2 ( 250 nm - 880 nm) 9080 µW/cm² = 90.8 W/m²
UVB (EU) ( 280 nm - 315 nm) 69.2 µW/cm² = 0.692 W/m²
UVB (US) ( 280 nm - 320 nm) 115 µW/cm² = 1.15 W/m²
UVA+B ( 280 nm - 380 nm) 644 µW/cm² = 6.44 W/m²
Solar UVB ( 290 nm - 315 nm) 69.2 µW/cm² = 0.692 W/m²
UVA D3 regulating ( 315 nm - 335 nm) 201 µW/cm² = 2.01 W/m²
UVA (EU) ( 315 nm - 380 nm) 575 µW/cm² = 5.75 W/m²
UVA2 (medical definition) ( 320 nm - 340 nm) 209 µW/cm² = 2.09 W/m²
UVA (US) ( 320 nm - 380 nm) 529 µW/cm² = 5.29 W/m²
UVA1 (variant) ( 335 nm - 380 nm) 374 µW/cm² = 3.74 W/m²
UVA1 (medical) ( 340 nm - 400 nm) 505 µW/cm² = 5.05 W/m²
vis. UVA ( 350 nm - 380 nm) 226 µW/cm² = 2.26 W/m²
VIS Rep3 ( 350 nm - 600 nm) 4530 µW/cm² = 45.3 W/m²
VIS Rep4 ( 350 nm - 700 nm) 6620 µW/cm² = 66.2 W/m²
purple ( 380 nm - 420 nm) 505 µW/cm² = 5.05 W/m²
VIS ( 380 nm - 780 nm) 7270 µW/cm² = 72.7 W/m²
VIS2 ( 400 nm - 680 nm) 5880 µW/cm² = 58.8 W/m²
PAR ( 400 nm - 700 nm) 6200 µW/cm² = 62 W/m²
tmp ( 400 nm - 1100 nm) 8330 µW/cm² = 83.3 W/m²
blue ( 420 nm - 490 nm) 1330 µW/cm² = 13.3 W/m²
green ( 490 nm - 575 nm) 1770 µW/cm² = 17.7 W/m²
yellow ( 575 nm - 585 nm) 211 µW/cm² = 2.11 W/m²
orange ( 585 nm - 650 nm) 1700 µW/cm² = 17 W/m²
red ( 650 nm - 780 nm) 1760 µW/cm² = 17.6 W/m²
IRA ( 700 nm - 1400 nm) 2130 µW/cm² = 21.3 W/m²
IR2 ( 720 nm - 1100 nm) 1910 µW/cm² = 19.1 W/m²
IRB ( 1400 nm - 3000 nm) 0 µW/cm² = 0 W/m²
Actionspectra
Erythema 4.19 UV-Index
Pyrimidine dimerization of DNA 43 µW/cm²
Photoceratitis 6.45 µW/cm²
Photoconjunctivitis 0.118 µW/cm²
DNA Damage 0.415
Vitamin D3 17.5 µW/cm²
Photosynthesis 4300 µW/cm²
Luminosity 17800 lx
Human L-Cone 2710 µW/cm²
Human M-Cone 2110 µW/cm²
Human S-Cone 1110 µW/cm²
CIE X 2540 µW/cm²
CIE Y 2470 µW/cm²
CIE Z 2030 µW/cm²
PAR 29600000 mol photons
Extinction preD3 124 e-3*m²/mol
Extinction Tachysterol 445 e-3*m²/mol
Exctincition PreD3 59300 m²/mol
Extinction Lumisterol 17 m²/mol
Exctincition Tachysterol 647000 m²/mol
Extinction 7DHC 16.1 m²/mol
L-Cone 2370 µW/cm²
M-Cone 1890 µW/cm²
S-Cone 1890 µW/cm²
U-Cone 1000 µW/cm²
UVR - ICNIRP 2004 3.28 Rel Biol Eff
Melatonin Supression 1620 µW/cm²
Blue Light Hazard 1290 µW/cm² (72.4 µW/cm² per 1000 lx)
CIE 174:2006 PreVit D3 19.1 µW/cm²
Lumen Reptil 17100 "pseudo-lx"
Vitamin D3 Degradation 22.5 µW/cm²
Actinic UV 3.25 µW/cm² (1.83 mW/klm)
Exctincition Lumisterol 25100 m²/mol
Exctincition 7DHC 21300 m²/mol
Exctincition Toxisterols 10700 m²/mol
Broadbandmeters
Solarmeter 6.2 (UVB, pre 2010) 143 µW/cm²
Solarmeter 6.5 (UV-Index, pre 2010) 5.08
Leybold UVB 100 µW/cm²
Leybold UVA 379 µW/cm²
Leybold UVC 0.00825 µW/cm²
DeltaOhm UVB 252 µW/cm²
DeltaOhm UVC 30.3 µW/cm²
Vernier UVB 32.1 µW/cm²
Vernier UVA 370 µW/cm²
Gröbel UVA 469 µW/cm²
Gröbel UVB 48.9 µW/cm²
Gröbel UVC -0.0416 µW/cm²
Luxmeter 17800 lx
Solarmeter 6.4 (D3) 15.9 IU/min
UVX-31 275 µW/cm²
IL UVB 0.0602 µW/cm²
IL UVA 437 µW/cm²
Solarmeter 6.5 (UVI, post 2010) 4.21 UV-Index
Solarmeter 6.2 (UVB, post 2010) 96.8 µW/cm² (Solarmeter Ratio = 23)
Solarmeter AlGaN 6.5 UVI sensor 59.1 UV Index
GenUV 7.1 UV-Index 3.44 UV-Index
Solarmeter 10.0 (Global Power) (manuf.) 106 W/m²
Solarmeter 4.0 (UVA) 6.87 mW/cm²
LS122 (manuf.) 2.43 W/m²
ISM400 (first guess) 93.6 W/m²
LS122 (assumption) 5.52 W/m²
ISM400_new 88.9 W/m²
Solarmeter 10.0 (Global Power) (assumption) 104 W/m²