CCT:1019 2830K
CRI DC:1017 3,87E-4
CRI R01:1002 96,9 (2830K)
CRI R02:1003 98,6 (2830K)
CRI R03:1004 66,3 (2830K)
CRI R04:1005 92,8 (2830K)
CRI R05:1006 98,3 (2830K)
CRI R06:1007 97,5 (2830K)
CRI R07:1008 88,0 (2830K)
CRI R08:1009 66,9 (2830K)
CRI R09:1010 11,4 (2830K)
CRI R10:1011 72,9 (2830K)
CRI R11:1012 93,0 (2830K)
CRI R12:1013 78,9 (2830K)
CRI R13:1014 92,3 (2830K)
CRI R14:1015 75,5 (2830K)
CRI R15:1016 94,5 (2830K)
CRI Ra:1001 88,2 (2830K)
DC<5.4E-3:1018 true
X:1022 168,52
Y:1023 153,18
Z:1024 52,64
x:1026 0,4502
y:1027 0,4092
z:1028 0,1406
Spectrum 638: SW52 Edit
DeleteMeasurement
Brand |
Osram Osram GmbH http://www.osram.de/ |
---|---|
Lamp Product |
DULUX L 36W 930 |
Lamp ID |
SW52 (12/2019) |
Spectrometer | USB2000+ |
Ballast | - no ballast or default/unknown ballast - |
Reflector | |
Distance | 0 cm |
Age | 500 hours |
Originator (measurement) | Sarina Wunderlich |
Colorimetry
Colorimetry is the science to describe physically the human color perception. The wavelength range 380 nm - 780 nm is visible to humans and detected by three different photoreceptors. Many Reptiles see the range 350 nm - 800 nm and have an additional UV photoreceptor in their retina.
Whereas a spectrometer measures the intensity in every tiny wavelength interval resulting in thousands of individual intensities, the human eye only measures three intensities detected by the three cones. The same is true for the reptile eye with usually three or four photoreceptors. Effectively the detailled spectrum displayed above reduces to a much compacter bar graph displayed below. The photoreceptor sensitivites from these L-Cone, M-Cone, S-Cone, and U-Cone are used, they are chosen as an average of measured reptile photoreceptor sensitivity curves. The bar graph also shows as reference the intensity seen by the three or four photoreceptors for average sunlight (id 1).
From these three numbers the colour coordinate and the correlated colour temperature for humans are calculated using the CIE standard method. I adapted this concept to a "3 cone reptile (M,S,U)" and a "4 cone reptile (L,M,S,U)". I am sure, that this adaption to other colour spaces makes sense mathematically and this is also done in scientific research regarding colour vision of animals, however I have not seen calculation of colour temperatures for other animals in the scientific literature. Even if it is hypothetical, at least this shows, how arbitrary the colour temperature is, and that the colour temperature calculated for humans does not apply to reptiles. The colour spaces also show the colour coordinates of different phases of daylight ((ids 1, 338 – 451, 511 – 513 ), indicated by crosses, coloured in the appriximate colour perceived by a human.
Human (CIE) | 3 cone reptile | 4 cone reptile | |
---|---|---|---|
Cone Excitation | |||
Colour Coordinate | ( 0.45 ; 0.41 ) | ( 0.56 ; 0.34 ) | ( 0.54 ; 0.26 ; 0.16 ) |
CCT | 2800 Kelvin | 3200 Kelvin | 2800 Kelvin |
distance | 0.035 | 0.033 | |
colour space | 3-D-graph not implemented yet |
Vitamin D3 Analysis
Vitamin D3 is produced by UVB radiation around 300 nm. 7DHC/ProD3 present in the skin is converted to PreD3 when absorbing an UV photon. PreD3 can be converted back to ProD3, to Lumisterol, or to Tachysterol when absorbing another UV photon or can be converted to Vitamin D3 in a warm environment.
This process prevents any overdose of vitamin D3 from UV radiation with a spectrum similar to sunlight. As a comparison the solar spectra at 20°(id:14) and at 85°(id:21) solar angle are shown.
The ratio of the two solarmeters 6.2 (UVB) and 6.5 (UV index) readings has proven a useful and very simply number to acess the spectral shape in the vitamin-d3-active region.
Effective Irradiances
Effective irradiances are calculated for all ranges, actionspectra and radiometers currently present in this database.
The calculation method is a numerical implementation (Simpson's rule) of the formula
To learn more about calculating effective irradiances and radiometers I recommend this excellent report on UVB meters: Characterizing the Performance of Integral Measuring UV-Meters (pdf).
The numbers in the following tables can also be used to estimate certain (effective) irradiances from radiomer readings. Example: If the database lists
- range: UVB (US) = 13.8 µW/cm²
- radiometer: Solarmeter 6.2 = 19.6 µW/cm²
total ( 0 nm - 0 nm) 4760 µW/cm² = 47.6 W/m² UVC ( 0 nm - 280 nm) 17.6 µW/cm² = 0.176 W/m² non-terrestrial ( 0 nm - 290 nm) 17.6 µW/cm² = 0.176 W/m² total2 ( 250 nm - 880 nm) 4730 µW/cm² = 47.3 W/m² UVB (EU) ( 280 nm - 315 nm) 3 µW/cm² = 0.03 W/m² UVB (US) ( 280 nm - 320 nm) 3.57 µW/cm² = 0.0357 W/m² UVA+B ( 280 nm - 380 nm) 38.1 µW/cm² = 0.381 W/m² Solar UVB ( 290 nm - 315 nm) 3 µW/cm² = 0.03 W/m² UVA D3 regulating ( 315 nm - 335 nm) 3.19 µW/cm² = 0.0319 W/m² UVA (EU) ( 315 nm - 380 nm) 35.1 µW/cm² = 0.351 W/m² UVA2 (medical definition) ( 320 nm - 340 nm) 3.58 µW/cm² = 0.0358 W/m² UVA (US) ( 320 nm - 380 nm) 34.6 µW/cm² = 0.346 W/m² UVA1 (variant) ( 335 nm - 380 nm) 31.9 µW/cm² = 0.319 W/m² UVA1 (medical) ( 340 nm - 400 nm) 39.1 µW/cm² = 0.391 W/m² vis. UVA ( 350 nm - 380 nm) 28.6 µW/cm² = 0.286 W/m² VIS Rep3 ( 350 nm - 600 nm) 2500 µW/cm² = 25 W/m² VIS Rep4 ( 350 nm - 700 nm) 4350 µW/cm² = 43.5 W/m² purple ( 380 nm - 420 nm) 111 µW/cm² = 1.11 W/m² VIS ( 380 nm - 780 nm) 4550 µW/cm² = 45.5 W/m² VIS2 ( 400 nm - 680 nm) 4240 µW/cm² = 42.4 W/m² PAR ( 400 nm - 700 nm) 4310 µW/cm² = 43.1 W/m² tmp ( 400 nm - 1100 nm) 4680 µW/cm² = 46.8 W/m² blue ( 420 nm - 490 nm) 536 µW/cm² = 5.36 W/m² green ( 490 nm - 575 nm) 1300 µW/cm² = 13 W/m² yellow ( 575 nm - 585 nm) 213 µW/cm² = 2.13 W/m² orange ( 585 nm - 650 nm) 1920 µW/cm² = 19.2 W/m² red ( 650 nm - 780 nm) 477 µW/cm² = 4.77 W/m² IRA ( 700 nm - 1400 nm) 370 µW/cm² = 3.7 W/m² IR2 ( 720 nm - 1100 nm) 227 µW/cm² = 2.27 W/m² IRB ( 1400 nm - 3000 nm) 0 µW/cm² = 0 W/m²
Erythema 0.54 UV-Index Pyrimidine dimerization of DNA 1.76 µW/cm² Photoceratitis 0.767 µW/cm² Photoconjunctivitis 0.031 µW/cm² DNA Damage 0.116 Vitamin D3 1.68 µW/cm² Photosynthesis 2740 µW/cm² Luminosity 16200 lx Human L-Cone 2550 µW/cm² Human M-Cone 1750 µW/cm² Human S-Cone 405 µW/cm² CIE X 2470 µW/cm² CIE Y 2240 µW/cm² CIE Z 771 µW/cm² PAR 21100000 mol photons Extinction preD3 6.71 e-3*m²/mol Extinction Tachysterol 25.7 e-3*m²/mol Exctincition PreD3 3620 m²/mol Extinction Lumisterol 3.62 m²/mol Exctincition Tachysterol 34700 m²/mol Extinction 7DHC 5.11 m²/mol L-Cone 2300 µW/cm² M-Cone 1090 µW/cm² S-Cone 659 µW/cm² U-Cone 192 µW/cm² UVR - ICNIRP 2004 0.629 Rel Biol Eff Melatonin Supression 679 µW/cm² Blue Light Hazard 461 µW/cm² (28.6 µW/cm² per 1000 lx) CIE 174:2006 PreVit D3 1.77 µW/cm² Lumen Reptil 11500 "pseudo-lx" Vitamin D3 Degradation 0.953 µW/cm² Actinic UV 0.625 µW/cm² (0.387 mW/klm) Exctincition Lumisterol 4370 m²/mol Exctincition 7DHC 6250 m²/mol Exctincition Toxisterols 381 m²/mol
Solarmeter 6.2 (UVB, pre 2010) 4.52 µW/cm² Solarmeter 6.5 (UV-Index, pre 2010) 0.49 Leybold UVB 3.19 µW/cm² Leybold UVA 25.2 µW/cm² Leybold UVC 0.00382 µW/cm² DeltaOhm UVB 5.39 µW/cm² DeltaOhm UVC 0.78 µW/cm² Vernier UVB 1.79 µW/cm² Vernier UVA 14.1 µW/cm² Gröbel UVA 29.7 µW/cm² Gröbel UVB 2.39 µW/cm² Gröbel UVC -0.00452 µW/cm² Luxmeter 15600 lx Solarmeter 6.4 (D3) 1.53 IU/min UVX-31 6.88 µW/cm² IL UVB 0.00216 µW/cm² IL UVA 32 µW/cm² Solarmeter 6.5 (UVI, post 2010) 0.325 UV-Index Solarmeter 6.2 (UVB, post 2010) 2.34 µW/cm² (Solarmeter Ratio = 7.2) Solarmeter AlGaN 6.5 UVI sensor 2.66 UV Index GenUV 7.1 UV-Index 0.14 UV-Index Solarmeter 10.0 (Global Power) (manuf.) 55.1 W/m² Solarmeter 4.0 (UVA) 0.6 mW/cm² LS122 (manuf.) 0.177 W/m² ISM400 (first guess) 43.4 W/m² LS122 (assumption) 2.55 W/m² ISM400_new 37 W/m² Solarmeter 10.0 (Global Power) (assumption) 55.4 W/m²