CCT:1019 4215K
CRI DC:1017 5,03E-3
CRI R01:1002 80,8 (4215K)
CRI R02:1003 90,7 (4215K)
CRI R03:1004 96,5 (4215K)
CRI R04:1005 79,7 (4215K)
CRI R05:1006 81,1 (4215K)
CRI R06:1007 88,3 (4215K)
CRI R07:1008 85,0 (4215K)
CRI R08:1009 62,4 (4215K)
CRI R09:1010 3,9 (4215K)
CRI R10:1011 78,1 (4215K)
CRI R11:1012 78,7 (4215K)
CRI R12:1013 61,3 (4215K)
CRI R13:1014 83,5 (4215K)
CRI R14:1015 98,4 (4215K)
CRI R15:1016 73,0 (4215K)
CRI Ra:1001 83,1 (4215K)
DC<5.4E-3:1018 true
X:1022 8,85
Y:1023 9,07
Z:1024 5,73
x:1026 0,3743
y:1027 0,3836
z:1028 0,2421
Spectrum 626: SW37 Edit
DeleteMeasurement
Brand |
Terrario Reptiles Czech/Polish |
---|---|
Lamp Product |
LED UVB 10.0 3W |
Lamp ID |
SW37 (08/2022) donated by Petr Vejřík , see review in https://www.rostlinna-akvaria.cz/zarovky/zarovka-terrario-reptile-s-led-uvb-10-0-3w |
Spectrometer | USB2000+ |
Ballast | - no ballast or default/unknown ballast - |
Reflector | |
Distance | 5 cm |
Age | 100 hours |
Originator (measurement) | Sarina Wunderlich |
Colorimetry
Colorimetry is the science to describe physically the human color perception. The wavelength range 380 nm - 780 nm is visible to humans and detected by three different photoreceptors. Many Reptiles see the range 350 nm - 800 nm and have an additional UV photoreceptor in their retina.
Whereas a spectrometer measures the intensity in every tiny wavelength interval resulting in thousands of individual intensities, the human eye only measures three intensities detected by the three cones. The same is true for the reptile eye with usually three or four photoreceptors. Effectively the detailled spectrum displayed above reduces to a much compacter bar graph displayed below. The photoreceptor sensitivites from these L-Cone, M-Cone, S-Cone, and U-Cone are used, they are chosen as an average of measured reptile photoreceptor sensitivity curves. The bar graph also shows as reference the intensity seen by the three or four photoreceptors for average sunlight (id 1).
From these three numbers the colour coordinate and the correlated colour temperature for humans are calculated using the CIE standard method. I adapted this concept to a "3 cone reptile (M,S,U)" and a "4 cone reptile (L,M,S,U)". I am sure, that this adaption to other colour spaces makes sense mathematically and this is also done in scientific research regarding colour vision of animals, however I have not seen calculation of colour temperatures for other animals in the scientific literature. Even if it is hypothetical, at least this shows, how arbitrary the colour temperature is, and that the colour temperature calculated for humans does not apply to reptiles. The colour spaces also show the colour coordinates of different phases of daylight ((ids 1, 338 – 451, 511 – 513 ), indicated by crosses, coloured in the appriximate colour perceived by a human.
Human (CIE) | 3 cone reptile | 4 cone reptile | |
---|---|---|---|
Cone Excitation | |||
Colour Coordinate | ( 0.37 ; 0.38 ) | ( 0.53 ; 0.36 ) | ( 0.41 ; 0.31 ; 0.21 ) |
CCT | 4200 Kelvin | 3500 Kelvin | 3600 Kelvin |
distance | 0.043 | 0.027 | |
colour space | 3-D-graph not implemented yet |
Vitamin D3 Analysis
Vitamin D3 is produced by UVB radiation around 300 nm. 7DHC/ProD3 present in the skin is converted to PreD3 when absorbing an UV photon. PreD3 can be converted back to ProD3, to Lumisterol, or to Tachysterol when absorbing another UV photon or can be converted to Vitamin D3 in a warm environment.
This process prevents any overdose of vitamin D3 from UV radiation with a spectrum similar to sunlight. As a comparison the solar spectra at 20°(id:14) and at 85°(id:21) solar angle are shown.
The ratio of the two solarmeters 6.2 (UVB) and 6.5 (UV index) readings has proven a useful and very simply number to acess the spectral shape in the vitamin-d3-active region.
Effective Irradiances
Effective irradiances are calculated for all ranges, actionspectra and radiometers currently present in this database.
The calculation method is a numerical implementation (Simpson's rule) of the formula
To learn more about calculating effective irradiances and radiometers I recommend this excellent report on UVB meters: Characterizing the Performance of Integral Measuring UV-Meters (pdf).
The numbers in the following tables can also be used to estimate certain (effective) irradiances from radiomer readings. Example: If the database lists
- range: UVB (US) = 13.8 µW/cm²
- radiometer: Solarmeter 6.2 = 19.6 µW/cm²
total ( 0 nm - 0 nm) 2270 µW/cm² = 22.7 W/m² UVC ( 0 nm - 280 nm) 22.5 µW/cm² = 0.225 W/m² non-terrestrial ( 0 nm - 290 nm) 117 µW/cm² = 1.17 W/m² total2 ( 250 nm - 880 nm) 2270 µW/cm² = 22.7 W/m² UVB (EU) ( 280 nm - 315 nm) 138 µW/cm² = 1.38 W/m² UVB (US) ( 280 nm - 320 nm) 139 µW/cm² = 1.39 W/m² UVA+B ( 280 nm - 380 nm) 145 µW/cm² = 1.45 W/m² Solar UVB ( 290 nm - 315 nm) 43.6 µW/cm² = 0.436 W/m² UVA D3 regulating ( 315 nm - 335 nm) 2.29 µW/cm² = 0.0229 W/m² UVA (EU) ( 315 nm - 380 nm) 7.01 µW/cm² = 0.0701 W/m² UVA2 (medical definition) ( 320 nm - 340 nm) 1.81 µW/cm² = 0.0181 W/m² UVA (US) ( 320 nm - 380 nm) 6.21 µW/cm² = 0.0621 W/m² UVA1 (variant) ( 335 nm - 380 nm) 4.72 µW/cm² = 0.0472 W/m² UVA1 (medical) ( 340 nm - 400 nm) 58 µW/cm² = 0.58 W/m² vis. UVA ( 350 nm - 380 nm) 3.83 µW/cm² = 0.0383 W/m² VIS Rep3 ( 350 nm - 600 nm) 1490 µW/cm² = 14.9 W/m² VIS Rep4 ( 350 nm - 700 nm) 2070 µW/cm² = 20.7 W/m² purple ( 380 nm - 420 nm) 92.2 µW/cm² = 0.922 W/m² VIS ( 380 nm - 780 nm) 2100 µW/cm² = 21 W/m² VIS2 ( 400 nm - 680 nm) 1980 µW/cm² = 19.8 W/m² PAR ( 400 nm - 700 nm) 2010 µW/cm² = 20.1 W/m² tmp ( 400 nm - 1100 nm) 2050 µW/cm² = 20.5 W/m² blue ( 420 nm - 490 nm) 392 µW/cm² = 3.92 W/m² green ( 490 nm - 575 nm) 716 µW/cm² = 7.16 W/m² yellow ( 575 nm - 585 nm) 113 µW/cm² = 1.13 W/m² orange ( 585 nm - 650 nm) 608 µW/cm² = 6.08 W/m² red ( 650 nm - 780 nm) 180 µW/cm² = 1.8 W/m² IRA ( 700 nm - 1400 nm) 39.4 µW/cm² = 0.394 W/m² IR2 ( 720 nm - 1100 nm) 21.4 µW/cm² = 0.214 W/m² IRB ( 1400 nm - 3000 nm) 0 µW/cm² = 0 W/m²
Erythema 59.4 UV-Index Pyrimidine dimerization of DNA 33.2 µW/cm² Photoceratitis 103 µW/cm² Photoconjunctivitis 33.2 µW/cm² DNA Damage 65.2 Vitamin D3 113 µW/cm² Photosynthesis 1300 µW/cm² Luminosity 7100 lx Human L-Cone 1080 µW/cm² Human M-Cone 848 µW/cm² Human S-Cone 315 µW/cm² CIE X 966 µW/cm² CIE Y 991 µW/cm² CIE Z 623 µW/cm² PAR 9470000 mol photons Extinction preD3 819 e-3*m²/mol Extinction Tachysterol 2850 e-3*m²/mol Exctincition PreD3 660000 m²/mol Extinction Lumisterol 836 m²/mol Exctincition Tachysterol 3620000 m²/mol Extinction 7DHC 1090 m²/mol L-Cone 940 µW/cm² M-Cone 704 µW/cm² S-Cone 476 µW/cm² U-Cone 150 µW/cm² UVR - ICNIRP 2004 108 Rel Biol Eff Melatonin Supression 497 µW/cm² Blue Light Hazard 335 µW/cm² (47.2 µW/cm² per 1000 lx) CIE 174:2006 PreVit D3 112 µW/cm² Lumen Reptil 5740 "pseudo-lx" Vitamin D3 Degradation 83.4 µW/cm² Actinic UV 107 µW/cm² (151 mW/klm) Exctincition Lumisterol 954000 m²/mol Exctincition 7DHC 1230000 m²/mol Exctincition Toxisterols 103000 m²/mol
Solarmeter 6.2 (UVB, pre 2010) 226 µW/cm² Solarmeter 6.5 (UV-Index, pre 2010) 45.9 Leybold UVB 55.1 µW/cm² Leybold UVA 8.1 µW/cm² Leybold UVC 9.14 µW/cm² DeltaOhm UVB 87 µW/cm² DeltaOhm UVC 55.7 µW/cm² Vernier UVB 74.3 µW/cm² Vernier UVA 4.56 µW/cm² Gröbel UVA 5.71 µW/cm² Gröbel UVB 133 µW/cm² Gröbel UVC 17.1 µW/cm² Luxmeter 7200 lx Solarmeter 6.4 (D3) 143 IU/min UVX-31 76.6 µW/cm² IL UVB 0.108 µW/cm² IL UVA 6.83 µW/cm² Solarmeter 6.5 (UVI, post 2010) 23.2 UV-Index Solarmeter 6.2 (UVB, post 2010) 72.7 µW/cm² (Solarmeter Ratio = 3.13) Solarmeter AlGaN 6.5 UVI sensor 115 UV Index GenUV 7.1 UV-Index 6.92 UV-Index Solarmeter 10.0 (Global Power) (manuf.) 23.3 W/m² Solarmeter 4.0 (UVA) 0.437 mW/cm² LS122 (manuf.) 0.00528 W/m² ISM400 (first guess) 16.4 W/m² LS122 (assumption) 0.901 W/m² ISM400_new 13.3 W/m² Solarmeter 10.0 (Global Power) (assumption) 22.7 W/m²