CCT:1019 4276K
CRI DC:1017 4,44E-3
CRI R01:1002 80,8 (4276K)
CRI R02:1003 91,3 (4276K)
CRI R03:1004 96,0 (4276K)
CRI R04:1005 78,9 (4276K)
CRI R05:1006 81,3 (4276K)
CRI R06:1007 89,4 (4276K)
CRI R07:1008 83,9 (4276K)
CRI R08:1009 62,0 (4276K)
CRI R09:1010 4,6 (4276K)
CRI R10:1011 79,4 (4276K)
CRI R11:1012 77,6 (4276K)
CRI R12:1013 61,8 (4276K)
CRI R13:1014 83,7 (4276K)
CRI R14:1015 98,2 (4276K)
CRI R15:1016 73,1 (4276K)
CRI Ra:1001 83,0 (4276K)
DC<5.4E-3:1018 true
X:1022 4,82
Y:1023 4,94
Z:1024 3,22
x:1026 0,3714
y:1027 0,3803
z:1028 0,2482
Spectrum 625: SW38 Edit
DeleteMeasurement
Brand |
Terrario Reptiles Czech/Polish |
---|---|
Lamp Product |
LED UVB 10.0 3W |
Lamp ID |
SW38 (08/2022) donated by Petr Vejřík , see review in https://www.rostlinna-akvaria.cz/zarovky/zarovka-terrario-reptile-s-led-uvb-10-0-3w |
Spectrometer | USB2000+ |
Ballast | - no ballast or default/unknown ballast - |
Reflector | |
Distance | 5 cm |
Age | 100 hours |
Originator (measurement) | Sarina Wunderlich |
Colorimetry
Colorimetry is the science to describe physically the human color perception. The wavelength range 380 nm - 780 nm is visible to humans and detected by three different photoreceptors. Many Reptiles see the range 350 nm - 800 nm and have an additional UV photoreceptor in their retina.
Whereas a spectrometer measures the intensity in every tiny wavelength interval resulting in thousands of individual intensities, the human eye only measures three intensities detected by the three cones. The same is true for the reptile eye with usually three or four photoreceptors. Effectively the detailled spectrum displayed above reduces to a much compacter bar graph displayed below. The photoreceptor sensitivites from these L-Cone, M-Cone, S-Cone, and U-Cone are used, they are chosen as an average of measured reptile photoreceptor sensitivity curves. The bar graph also shows as reference the intensity seen by the three or four photoreceptors for average sunlight (id 1).
From these three numbers the colour coordinate and the correlated colour temperature for humans are calculated using the CIE standard method. I adapted this concept to a "3 cone reptile (M,S,U)" and a "4 cone reptile (L,M,S,U)". I am sure, that this adaption to other colour spaces makes sense mathematically and this is also done in scientific research regarding colour vision of animals, however I have not seen calculation of colour temperatures for other animals in the scientific literature. Even if it is hypothetical, at least this shows, how arbitrary the colour temperature is, and that the colour temperature calculated for humans does not apply to reptiles. The colour spaces also show the colour coordinates of different phases of daylight ((ids 1, 338 – 451, 511 – 513 ), indicated by crosses, coloured in the appriximate colour perceived by a human.
Human (CIE) | 3 cone reptile | 4 cone reptile | |
---|---|---|---|
Cone Excitation | |||
Colour Coordinate | ( 0.37 ; 0.38 ) | ( 0.49 ; 0.34 ) | ( 0.39 ; 0.3 ; 0.21 ) |
CCT | 4300 Kelvin | 3800 Kelvin | 3800 Kelvin |
distance | 0.013 | 0.0089 | |
colour space | 3-D-graph not implemented yet |
Vitamin D3 Analysis
Vitamin D3 is produced by UVB radiation around 300 nm. 7DHC/ProD3 present in the skin is converted to PreD3 when absorbing an UV photon. PreD3 can be converted back to ProD3, to Lumisterol, or to Tachysterol when absorbing another UV photon or can be converted to Vitamin D3 in a warm environment.
This process prevents any overdose of vitamin D3 from UV radiation with a spectrum similar to sunlight. As a comparison the solar spectra at 20°(id:14) and at 85°(id:21) solar angle are shown.
The ratio of the two solarmeters 6.2 (UVB) and 6.5 (UV index) readings has proven a useful and very simply number to acess the spectral shape in the vitamin-d3-active region.
Effective Irradiances
Effective irradiances are calculated for all ranges, actionspectra and radiometers currently present in this database.
The calculation method is a numerical implementation (Simpson's rule) of the formula
To learn more about calculating effective irradiances and radiometers I recommend this excellent report on UVB meters: Characterizing the Performance of Integral Measuring UV-Meters (pdf).
The numbers in the following tables can also be used to estimate certain (effective) irradiances from radiomer readings. Example: If the database lists
- range: UVB (US) = 13.8 µW/cm²
- radiometer: Solarmeter 6.2 = 19.6 µW/cm²
total ( 0 nm - 0 nm) 1350 µW/cm² = 13.5 W/m² UVC ( 0 nm - 280 nm) 68.4 µW/cm² = 0.684 W/m² non-terrestrial ( 0 nm - 290 nm) 144 µW/cm² = 1.44 W/m² total2 ( 250 nm - 880 nm) 1340 µW/cm² = 13.4 W/m² UVB (EU) ( 280 nm - 315 nm) 98.2 µW/cm² = 0.982 W/m² UVB (US) ( 280 nm - 320 nm) 98.6 µW/cm² = 0.986 W/m² UVA+B ( 280 nm - 380 nm) 105 µW/cm² = 1.05 W/m² Solar UVB ( 290 nm - 315 nm) 22.8 µW/cm² = 0.228 W/m² UVA D3 regulating ( 315 nm - 335 nm) 1.01 µW/cm² = 0.0101 W/m² UVA (EU) ( 315 nm - 380 nm) 6.41 µW/cm² = 0.0641 W/m² UVA2 (medical definition) ( 320 nm - 340 nm) 0.809 µW/cm² = 0.00809 W/m² UVA (US) ( 320 nm - 380 nm) 6.06 µW/cm² = 0.0606 W/m² UVA1 (variant) ( 335 nm - 380 nm) 5.39 µW/cm² = 0.0539 W/m² UVA1 (medical) ( 340 nm - 400 nm) 57 µW/cm² = 0.57 W/m² vis. UVA ( 350 nm - 380 nm) 4.93 µW/cm² = 0.0493 W/m² VIS Rep3 ( 350 nm - 600 nm) 842 µW/cm² = 8.42 W/m² VIS Rep4 ( 350 nm - 700 nm) 1160 µW/cm² = 11.6 W/m² purple ( 380 nm - 420 nm) 81 µW/cm² = 0.81 W/m² VIS ( 380 nm - 780 nm) 1170 µW/cm² = 11.7 W/m² VIS2 ( 400 nm - 680 nm) 1080 µW/cm² = 10.8 W/m² PAR ( 400 nm - 700 nm) 1100 µW/cm² = 11 W/m² tmp ( 400 nm - 1100 nm) 1120 µW/cm² = 11.2 W/m² blue ( 420 nm - 490 nm) 220 µW/cm² = 2.2 W/m² green ( 490 nm - 575 nm) 384 µW/cm² = 3.84 W/m² yellow ( 575 nm - 585 nm) 61 µW/cm² = 0.61 W/m² orange ( 585 nm - 650 nm) 325 µW/cm² = 3.25 W/m² red ( 650 nm - 780 nm) 99.3 µW/cm² = 0.993 W/m² IRA ( 700 nm - 1400 nm) 22.8 µW/cm² = 0.228 W/m² IR2 ( 720 nm - 1100 nm) 12.6 µW/cm² = 0.126 W/m² IRB ( 1400 nm - 3000 nm) 0 µW/cm² = 0 W/m²
Erythema 64.6 UV-Index Pyrimidine dimerization of DNA 21.3 µW/cm² Photoceratitis 86.7 µW/cm² Photoconjunctivitis 63.6 µW/cm² DNA Damage 94.1 Vitamin D3 92.6 µW/cm² Photosynthesis 713 µW/cm² Luminosity 3820 lx Human L-Cone 581 µW/cm² Human M-Cone 457 µW/cm² Human S-Cone 176 µW/cm² CIE X 520 µW/cm² CIE Y 533 µW/cm² CIE Z 348 µW/cm² PAR 5190000 mol photons Extinction preD3 1020 e-3*m²/mol Extinction Tachysterol 3160 e-3*m²/mol Exctincition PreD3 898000 m²/mol Extinction Lumisterol 1060 m²/mol Exctincition Tachysterol 3990000 m²/mol Extinction 7DHC 1370 m²/mol L-Cone 505 µW/cm² M-Cone 387 µW/cm² S-Cone 268 µW/cm² U-Cone 138 µW/cm² UVR - ICNIRP 2004 130 Rel Biol Eff Melatonin Supression 280 µW/cm² Blue Light Hazard 188 µW/cm² (49.3 µW/cm² per 1000 lx) CIE 174:2006 PreVit D3 90.6 µW/cm² Lumen Reptil 3230 "pseudo-lx" Vitamin D3 Degradation 90 µW/cm² Actinic UV 129 µW/cm² (338 mW/klm) Exctincition Lumisterol 1200000 m²/mol Exctincition 7DHC 1500000 m²/mol Exctincition Toxisterols 144000 m²/mol
Solarmeter 6.2 (UVB, pre 2010) 235 µW/cm² Solarmeter 6.5 (UV-Index, pre 2010) 44 Leybold UVB 32.3 µW/cm² Leybold UVA 7.86 µW/cm² Leybold UVC 31.7 µW/cm² DeltaOhm UVB 60 µW/cm² DeltaOhm UVC 71.1 µW/cm² Vernier UVB 53 µW/cm² Vernier UVA 2.98 µW/cm² Gröbel UVA 4.75 µW/cm² Gröbel UVB 112 µW/cm² Gröbel UVC 46 µW/cm² Luxmeter 3880 lx Solarmeter 6.4 (D3) 137 IU/min UVX-31 58.5 µW/cm² IL UVB 0.0998 µW/cm² IL UVA 6.87 µW/cm² Solarmeter 6.5 (UVI, post 2010) 23 UV-Index Solarmeter 6.2 (UVB, post 2010) 70.8 µW/cm² (Solarmeter Ratio = 3.08) Solarmeter AlGaN 6.5 UVI sensor 104 UV Index GenUV 7.1 UV-Index 7.13 UV-Index Solarmeter 10.0 (Global Power) (manuf.) 13 W/m² Solarmeter 4.0 (UVA) 0.422 mW/cm² LS122 (manuf.) 0.000995 W/m² ISM400 (first guess) 8.93 W/m² LS122 (assumption) 0.484 W/m² ISM400_new 7.23 W/m² Solarmeter 10.0 (Global Power) (assumption) 12.4 W/m²