Numerical data extracted from figure, so there will be artefacts!
Osram personal communication April 2020;
http://literatur.licht-im-terrarium.de/index.php?action=resource_RESOURCEVIEW_CORE&id=1147
Numerical data extracted from figure, so there will be artefacts!
Osram personal communication April 2020;
http://literatur.licht-im-terrarium.de/index.php?action=resource_RESOURCEVIEW_CORE&id=1147
Brand |
Osram Osram GmbH http://www.osram.de/ |
---|---|
Lamp Product |
Powerball HCI-T 35W WDL plus |
Lamp ID |
HCIT35W930 (03/2012) |
Spectrometer | - |
Ballast | - no ballast or default/unknown ballast - |
Reflector | |
Distance | 0 cm |
Age | 0 hours |
Originator (measurement) | Publication |
Colorimetry is the science to describe physically the human color perception. The wavelength range 380 nm - 780 nm is visible to humans and detected by three different photoreceptors. Many Reptiles see the range 350 nm - 800 nm and have an additional UV photoreceptor in their retina.
Whereas a spectrometer measures the intensity in every tiny wavelength interval resulting in thousands of individual intensities, the human eye only measures three intensities detected by the three cones. The same is true for the reptile eye with usually three or four photoreceptors. Effectively the detailled spectrum displayed above reduces to a much compacter bar graph displayed below. The photoreceptor sensitivites from these L-Cone, M-Cone, S-Cone, and U-Cone are used, they are chosen as an average of measured reptile photoreceptor sensitivity curves. The bar graph also shows as reference the intensity seen by the three or four photoreceptors for average sunlight (id 1).
From these three numbers the colour coordinate and the correlated colour temperature for humans are calculated using the CIE standard method. I adapted this concept to a "3 cone reptile (M,S,U)" and a "4 cone reptile (L,M,S,U)". I am sure, that this adaption to other colour spaces makes sense mathematically and this is also done in scientific research regarding colour vision of animals, however I have not seen calculation of colour temperatures for other animals in the scientific literature. Even if it is hypothetical, at least this shows, how arbitrary the colour temperature is, and that the colour temperature calculated for humans does not apply to reptiles. The colour spaces also show the colour coordinates of different phases of daylight ((ids 1, 338 – 451, 511 – 513 ), indicated by crosses, coloured in the appriximate colour perceived by a human.
Human (CIE) | 3 cone reptile | 4 cone reptile | |
---|---|---|---|
Cone Excitation | |||
Colour Coordinate | ( 0.42 ; 0.39 ) | ( 0.43 ; 0.39 ) | ( 0.45 ; 0.23 ; 0.21 ) |
CCT | 3300 Kelvin | 4600 Kelvin | 3300 Kelvin |
distance | 0.051 | 0.072 | |
colour space | 3-D-graph not implemented yet |
Vitamin D3 is produced by UVB radiation around 300 nm. 7DHC/ProD3 present in the skin is converted to PreD3 when absorbing an UV photon. PreD3 can be converted back to ProD3, to Lumisterol, or to Tachysterol when absorbing another UV photon or can be converted to Vitamin D3 in a warm environment.
This process prevents any overdose of vitamin D3 from UV radiation with a spectrum similar to sunlight. As a comparison the solar spectra at 20°(id:14) and at 85°(id:21) solar angle are shown.
The ratio of the two solarmeters 6.2 (UVB) and 6.5 (UV index) readings has proven a useful and very simply number to acess the spectral shape in the vitamin-d3-active region.
Effective irradiances are calculated for all ranges, actionspectra and radiometers currently present in this database.
The calculation method is a numerical implementation (Simpson's rule) of the formula
To learn more about calculating effective irradiances and radiometers I recommend this excellent report on UVB meters: Characterizing the Performance of Integral Measuring UV-Meters (pdf).
The numbers in the following tables can also be used to estimate certain (effective) irradiances from radiomer readings. Example: If the database lists
total ( 0 nm - 0 nm) 57900 µW/cm² = 579 W/m² UVC ( 0 nm - 280 nm) 84.2 µW/cm² = 0.842 W/m² non-terrestrial ( 0 nm - 290 nm) 113 µW/cm² = 1.13 W/m² total2 ( 250 nm - 880 nm) 43800 µW/cm² = 438 W/m² UVB (EU) ( 280 nm - 315 nm) 99 µW/cm² = 0.99 W/m² UVB (US) ( 280 nm - 320 nm) 113 µW/cm² = 1.13 W/m² UVA+B ( 280 nm - 380 nm) 1070 µW/cm² = 10.7 W/m² Solar UVB ( 290 nm - 315 nm) 70 µW/cm² = 0.7 W/m² UVA D3 regulating ( 315 nm - 335 nm) 56.7 µW/cm² = 0.567 W/m² UVA (EU) ( 315 nm - 380 nm) 974 µW/cm² = 9.74 W/m² UVA2 (medical definition) ( 320 nm - 340 nm) 56.7 µW/cm² = 0.567 W/m² UVA (US) ( 320 nm - 380 nm) 959 µW/cm² = 9.59 W/m² UVA1 (variant) ( 335 nm - 380 nm) 917 µW/cm² = 9.17 W/m² UVA1 (medical) ( 340 nm - 400 nm) 1550 µW/cm² = 15.5 W/m² vis. UVA ( 350 nm - 380 nm) 855 µW/cm² = 8.55 W/m² VIS Rep3 ( 350 nm - 600 nm) 22700 µW/cm² = 227 W/m² VIS Rep4 ( 350 nm - 700 nm) 35600 µW/cm² = 356 W/m² purple ( 380 nm - 420 nm) 1580 µW/cm² = 15.8 W/m² VIS ( 380 nm - 780 nm) 37200 µW/cm² = 372 W/m² VIS2 ( 400 nm - 680 nm) 33300 µW/cm² = 333 W/m² PAR ( 400 nm - 700 nm) 34100 µW/cm² = 341 W/m² tmp ( 400 nm - 1100 nm) 46200 µW/cm² = 462 W/m² blue ( 420 nm - 490 nm) 5070 µW/cm² = 50.7 W/m² green ( 490 nm - 575 nm) 10200 µW/cm² = 102 W/m² yellow ( 575 nm - 585 nm) 1030 µW/cm² = 10.3 W/m² orange ( 585 nm - 650 nm) 13500 µW/cm² = 135 W/m² red ( 650 nm - 780 nm) 5800 µW/cm² = 58 W/m² IRA ( 700 nm - 1400 nm) 18900 µW/cm² = 189 W/m² IR2 ( 720 nm - 1100 nm) 11300 µW/cm² = 113 W/m² IRB ( 1400 nm - 3000 nm) 3120 µW/cm² = 31.2 W/m²
Erythema 59.4 UV-Index Pyrimidine dimerization of DNA 47.4 µW/cm² Photoceratitis 66.8 µW/cm² Photoconjunctivitis 77.1 µW/cm² DNA Damage 92.4 Vitamin D3 79 µW/cm² Photosynthesis 22300 µW/cm² Luminosity 116000 lx Human L-Cone 18100 µW/cm² Human M-Cone 13000 µW/cm² Human S-Cone 4310 µW/cm² CIE X 17300 µW/cm² CIE Y 16200 µW/cm² CIE Z 7850 µW/cm² PAR 164000000 mol photons Extinction preD3 1020 e-3*m²/mol Extinction Tachysterol 2560 e-3*m²/mol Exctincition PreD3 902000 m²/mol Extinction Lumisterol 859 m²/mol Exctincition Tachysterol 3220000 m²/mol Extinction 7DHC 1040 m²/mol L-Cone 16200 µW/cm² M-Cone 8430 µW/cm² S-Cone 7700 µW/cm² U-Cone 3700 µW/cm² UVR - ICNIRP 2004 104 Rel Biol Eff Melatonin Supression 6070 µW/cm² Blue Light Hazard 5050 µW/cm² (43.4 µW/cm² per 1000 lx) CIE 174:2006 PreVit D3 80.1 µW/cm² Lumen Reptil 91300 "pseudo-lx" Vitamin D3 Degradation 62.3 µW/cm² Actinic UV 103 µW/cm² (8.88 mW/klm) Exctincition Lumisterol 936000 m²/mol Exctincition 7DHC 1110000 m²/mol Exctincition Toxisterols 336000 m²/mol
Solarmeter 6.2 (UVB, pre 2010) 246 µW/cm² Solarmeter 6.5 (UV-Index, pre 2010) 30.3 Leybold UVB 79.9 µW/cm² Leybold UVA 724 µW/cm² Leybold UVC 61.3 µW/cm² DeltaOhm UVB 129 µW/cm² DeltaOhm UVC 91.1 µW/cm² Vernier UVB 59.8 µW/cm² Vernier UVA 382 µW/cm² Gröbel UVA 784 µW/cm² Gröbel UVB 99.8 µW/cm² Gröbel UVC 66.9 µW/cm² Luxmeter 115000 lx Solarmeter 6.4 (D3) 94.6 IU/min UVX-31 172 µW/cm² IL UVB 0.0967 µW/cm² IL UVA 897 µW/cm² Solarmeter 6.5 (UVI, post 2010) 21.3 UV-Index Solarmeter 6.2 (UVB, post 2010) 92.5 µW/cm² (Solarmeter Ratio = 4.34) Solarmeter AlGaN 6.5 UVI sensor 103 UV Index GenUV 7.1 UV-Index 7.88 UV-Index Solarmeter 10.0 (Global Power) (manuf.) 588 W/m² Solarmeter 4.0 (UVA) 16.2 mW/cm² LS122 (manuf.) 223 W/m² ISM400 (first guess) 539 W/m² LS122 (assumption) 222 W/m² ISM400_new 534 W/m² Solarmeter 10.0 (Global Power) (assumption) 589 W/m²