Spectrum 482: BE27 Edit
DeleteMeasurement
Brand |
Exo Terra Rolf C. Hagen Inc. http://www.hagen.com/ |
---|---|
Lamp Product |
Repti Glo 5.0 20W |
Lamp ID |
BE27 (04/2012) ReptiGlo 5.0 linear tube |
Spectrometer | USB2000+ (2) |
Ballast | - no ballast or default/unknown ballast - |
Reflector | |
Distance | 10 cm |
Age | 1 hours |
Originator (measurement) | Frances Baines |
Colorimetry
Colorimetry is the science to describe physically the human color perception. The wavelength range 380 nm - 780 nm is visible to humans and detected by three different photoreceptors. Many Reptiles see the range 350 nm - 800 nm and have an additional UV photoreceptor in their retina.
WARNING: The measurement range (350 - 800 nm) is not sufficient for this evaluation! Data is only available in the range 270.02 - 750.24 nm. Results are shown anyway but should be ignored by anyone except experts.
Whereas a spectrometer measures the intensity in every tiny wavelength interval resulting in thousands of individual intensities, the human eye only measures three intensities detected by the three cones. The same is true for the reptile eye with usually three or four photoreceptors. Effectively the detailled spectrum displayed above reduces to a much compacter bar graph displayed below. The photoreceptor sensitivites from these L-Cone, M-Cone, S-Cone, and U-Cone are used, they are chosen as an average of measured reptile photoreceptor sensitivity curves. The bar graph also shows as reference the intensity seen by the three or four photoreceptors for average sunlight (id 1).
From these three numbers the colour coordinate and the correlated colour temperature for humans are calculated using the CIE standard method. I adapted this concept to a "3 cone reptile (M,S,U)" and a "4 cone reptile (L,M,S,U)". I am sure, that this adaption to other colour spaces makes sense mathematically and this is also done in scientific research regarding colour vision of animals, however I have not seen calculation of colour temperatures for other animals in the scientific literature. Even if it is hypothetical, at least this shows, how arbitrary the colour temperature is, and that the colour temperature calculated for humans does not apply to reptiles. The colour spaces also show the colour coordinates of different phases of daylight ((ids 1, 338 – 451, 511 – 513 ), indicated by crosses, coloured in the appriximate colour perceived by a human.
Human (CIE) | 3 cone reptile | 4 cone reptile | |
---|---|---|---|
Cone Excitation | |||
Colour Coordinate | ( 0.22 ; 0.21 ) | ( 0.25 ; 0.43 ) | ( 0.12 ; 0.22 ; 0.38 ) |
CCT | 0 Kelvin | 10000 Kelvin | 16000 Kelvin |
distance | 0.097 | 0.1 | |
colour space | 3-D-graph not implemented yet |
Vitamin D3 Analysis
Vitamin D3 is produced by UVB radiation around 300 nm. 7DHC/ProD3 present in the skin is converted to PreD3 when absorbing an UV photon. PreD3 can be converted back to ProD3, to Lumisterol, or to Tachysterol when absorbing another UV photon or can be converted to Vitamin D3 in a warm environment.
This process prevents any overdose of vitamin D3 from UV radiation with a spectrum similar to sunlight. As a comparison the solar spectra at 20°(id:14) and at 85°(id:21) solar angle are shown.
The ratio of the two solarmeters 6.2 (UVB) and 6.5 (UV index) readings has proven a useful and very simply number to acess the spectral shape in the vitamin-d3-active region.
Effective Irradiances
Effective irradiances are calculated for all ranges, actionspectra and radiometers currently present in this database.
The calculation method is a numerical implementation (Simpson's rule) of the formula
To learn more about calculating effective irradiances and radiometers I recommend this excellent report on UVB meters: Characterizing the Performance of Integral Measuring UV-Meters (pdf).
The numbers in the following tables can also be used to estimate certain (effective) irradiances from radiomer readings. Example: If the database lists
- range: UVB (US) = 13.8 µW/cm²
- radiometer: Solarmeter 6.2 = 19.6 µW/cm²
total ( 0 nm - 0 nm) 897 µW/cm² = 8.97 W/m² UVC ( 0 nm - 280 nm) 0.0215 µW/cm² = 0.000215 W/m² non-terrestrial ( 0 nm - 290 nm) 0.225 µW/cm² = 0.00225 W/m² total2 ( 250 nm - 880 nm) 897 µW/cm² = 8.97 W/m² UVB (EU) ( 280 nm - 315 nm) 29.4 µW/cm² = 0.294 W/m² UVB (US) ( 280 nm - 320 nm) 44.1 µW/cm² = 0.441 W/m² UVA+B ( 280 nm - 380 nm) 327 µW/cm² = 3.27 W/m² Solar UVB ( 290 nm - 315 nm) 29.2 µW/cm² = 0.292 W/m² UVA D3 regulating ( 315 nm - 335 nm) 77.6 µW/cm² = 0.776 W/m² UVA (EU) ( 315 nm - 380 nm) 297 µW/cm² = 2.97 W/m² UVA2 (medical definition) ( 320 nm - 340 nm) 88.4 µW/cm² = 0.884 W/m² UVA (US) ( 320 nm - 380 nm) 282 µW/cm² = 2.82 W/m² UVA1 (variant) ( 335 nm - 380 nm) 220 µW/cm² = 2.2 W/m² UVA1 (medical) ( 340 nm - 400 nm) 233 µW/cm² = 2.33 W/m² vis. UVA ( 350 nm - 380 nm) 143 µW/cm² = 1.43 W/m² VIS Rep3 ( 350 nm - 600 nm) 665 µW/cm² = 6.65 W/m² VIS Rep4 ( 350 nm - 700 nm) 711 µW/cm² = 7.11 W/m² purple ( 380 nm - 420 nm) 78.2 µW/cm² = 0.782 W/m² VIS ( 380 nm - 780 nm) 571 µW/cm² = 5.71 W/m² VIS2 ( 400 nm - 680 nm) 527 µW/cm² = 5.27 W/m² PAR ( 400 nm - 700 nm) 529 µW/cm² = 5.29 W/m² tmp ( 400 nm - 1100 nm) 532 µW/cm² = 5.32 W/m² blue ( 420 nm - 490 nm) 276 µW/cm² = 2.76 W/m² green ( 490 nm - 575 nm) 144 µW/cm² = 1.44 W/m² yellow ( 575 nm - 585 nm) 11.9 µW/cm² = 0.119 W/m² orange ( 585 nm - 650 nm) 53.2 µW/cm² = 0.532 W/m² red ( 650 nm - 780 nm) 7.66 µW/cm² = 0.0766 W/m² IRA ( 700 nm - 1400 nm) 2.87 µW/cm² = 0.0287 W/m² IR2 ( 720 nm - 1100 nm) 0.0471 µW/cm² = 0.000471 W/m² IRB ( 1400 nm - 3000 nm) 0 µW/cm² = 0 W/m²
Erythema 2.36 UV-Index Pyrimidine dimerization of DNA 18.7 µW/cm² Photoceratitis 3.52 µW/cm² Photoconjunctivitis 0.127 µW/cm² DNA Damage 0.378 Vitamin D3 9.33 µW/cm² Photosynthesis 405 µW/cm² Luminosity 1170 lx Human L-Cone 165 µW/cm² Human M-Cone 164 µW/cm² Human S-Cone 229 µW/cm² CIE X 168 µW/cm² CIE Y 159 µW/cm² CIE Z 424 µW/cm² PAR 2350000 mol photons Extinction preD3 54.5 e-3*m²/mol Extinction Tachysterol 195 e-3*m²/mol Exctincition PreD3 27300 m²/mol Extinction Lumisterol 11.9 m²/mol Exctincition Tachysterol 286000 m²/mol Extinction 7DHC 12.4 m²/mol L-Cone 123 µW/cm² M-Cone 231 µW/cm² S-Cone 402 µW/cm² U-Cone 305 µW/cm² UVR - ICNIRP 2004 2.17 Rel Biol Eff Melatonin Supression 291 µW/cm² Blue Light Hazard 254 µW/cm² (218 µW/cm² per 1000 lx) CIE 174:2006 PreVit D3 10.2 µW/cm² Lumen Reptil 2090 "pseudo-lx" Vitamin D3 Degradation 9.35 µW/cm² Actinic UV 2.14 µW/cm² (18.3 mW/klm) Exctincition Lumisterol 15900 m²/mol Exctincition 7DHC 15500 m²/mol Exctincition Toxisterols 4600 m²/mol
Solarmeter 6.2 (UVB, pre 2010) 55.7 µW/cm² Solarmeter 6.5 (UV-Index, pre 2010) 2.72 Leybold UVB 39.6 µW/cm² Leybold UVA 209 µW/cm² Leybold UVC 0.0118 µW/cm² DeltaOhm UVB 99.8 µW/cm² DeltaOhm UVC 11.5 µW/cm² Vernier UVB 15.2 µW/cm² Vernier UVA 180 µW/cm² Gröbel UVA 250 µW/cm² Gröbel UVB 21.4 µW/cm² Gröbel UVC 0.00788 µW/cm² Luxmeter 1240 lx Solarmeter 6.4 (D3) 8.5 IU/min UVX-31 115 µW/cm² IL UVB 0.0251 µW/cm² IL UVA 241 µW/cm² Solarmeter 6.5 (UVI, post 2010) 2.13 UV-Index Solarmeter 6.2 (UVB, post 2010) 36.8 µW/cm² (Solarmeter Ratio = 17.3) Solarmeter AlGaN 6.5 UVI sensor 25.2 UV Index GenUV 7.1 UV-Index 1.41 UV-Index Solarmeter 10.0 (Global Power) (manuf.) 6.26 W/m² Solarmeter 4.0 (UVA) 3.29 mW/cm² LS122 (manuf.) 0 W/m² ISM400 (first guess) 2.79 W/m² LS122 (assumption) 0.0919 W/m² ISM400_new 1.98 W/m² Solarmeter 10.0 (Global Power) (assumption) 4.92 W/m²