Reptile Lamp Database

Spectrum 827: SW104 Edit
Delete

Full Spectrum

CCT:1019 5265K
CRI DC:1017 0
CRI R01:1002 94,7 (5265K)
CRI R02:1003 94,0 (5265K)
CRI R03:1004 94,8 (5265K)
CRI R04:1005 94,1 (5265K)
CRI R05:1006 94,0 (5265K)
CRI R06:1007 91,7 (5265K)
CRI R07:1008 93,5 (5265K)
CRI R08:1009 94,8 (5265K)
CRI R09:1010 89,0 (5265K)
CRI R10:1011 87,4 (5265K)
CRI R11:1012 95,3 (5265K)
CRI R12:1013 87,5 (5265K)
CRI R13:1014 94,1 (5265K)
CRI R14:1015 97,5 (5265K)
CRI R15:1016 93,9 (5265K)
CRI Ra:1001 94,0 (5265K)
DC<5.4E-3:1018 true

Measurement

Brand Fauna Lux
Lamp Product True Chroma 30W
Lamp ID SW104 (05/2025)
Spectrometer USB2000+
Ballast - no ballast or default/unknown ballast -
Reflector
Distance 18 cm
Age 10 hours
Originator (measurement) Sarina Wunderlich
Database entry created: Sarina Wunderlich 27/Jun/2025 ; updated: Sarina Wunderlich 27/Jun/2025

Colorimetry

Colorimetry is the science to describe physically the human color perception. The wavelength range 380 nm - 780 nm is visible to humans and detected by three different photoreceptors. Many Reptiles see the range 350 nm - 800 nm and have an additional UV photoreceptor in their retina.

Spectrum in the visible wavelength range

Whereas a spectrometer measures the intensity in every tiny wavelength interval resulting in thousands of individual intensities, the human eye only measures three intensities detected by the three cones. The same is true for the reptile eye with usually three or four photoreceptors. Effectively the detailled spectrum displayed above reduces to a much compacter bar graph displayed below. The photoreceptor sensitivites from these L-Cone, M-Cone, S-Cone, and U-Cone are used, they are chosen as an average of measured reptile photoreceptor sensitivity curves. The bar graph also shows as reference the intensity seen by the three or four photoreceptors for average sunlight (id 1).

From these three numbers the colour coordinate and the correlated colour temperature for humans are calculated using the CIE standard method. I adapted this concept to a "3 cone reptile (M,S,U)" and a "4 cone reptile (L,M,S,U)". I am sure, that this adaption to other colour spaces makes sense mathematically and this is also done in scientific research regarding colour vision of animals, however I have not seen calculation of colour temperatures for other animals in the scientific literature. Even if it is hypothetical, at least this shows, how arbitrary the colour temperature is, and that the colour temperature calculated for humans does not apply to reptiles. The colour spaces also show the colour coordinates of different phases of daylight ((ids 1, 338451, 511513 ), indicated by crosses, coloured in the appriximate colour perceived by a human.

Human (CIE) 3 cone reptile 4 cone reptile
Cone Excitation
Colour Coordinate ( 0.34 ; 0.35 ) ( 0.49 ; 0.36 ) ( 0.32 ; 0.33 ; 0.24 )
CCT 5300 Kelvin 3800 Kelvin 4500 Kelvin
distance 0.032 0.052
colour space 3-D-graph not implemented yet

Vitamin D3 Analysis

Vitamin D3 is produced by UVB radiation around 300 nm. 7DHC/ProD3 present in the skin is converted to PreD3 when absorbing an UV photon. PreD3 can be converted back to ProD3, to Lumisterol, or to Tachysterol when absorbing another UV photon or can be converted to Vitamin D3 in a warm environment.

This process prevents any overdose of vitamin D3 from UV radiation with a spectrum similar to sunlight. As a comparison the solar spectra at 20°(id:14) and at 85°(id:21) solar angle are shown.

Spectrum in the vitamin D3 active wavelength range

The ratio of the two solarmeters 6.2 (UVB) and 6.5 (UV index) readings has proven a useful and very simply number to acess the spectral shape in the vitamin-d3-active region.

Effective Irradiances

Effective irradiances are calculated for all ranges, actionspectra and radiometers currently present in this database.

The calculation method is a numerical implementation (Simpson's rule) of the formula

To learn more about calculating effective irradiances and radiometers I recommend this excellent report on UVB meters: Characterizing the Performance of Integral Measuring UV-Meters (pdf).

The numbers in the following tables can also be used to estimate certain (effective) irradiances from radiomer readings. Example: If the database lists

  • range: UVB (US) = 13.8 µW/cm²
  • radiometer: Solarmeter 6.2 = 19.6 µW/cm²
then any Solarmeter 6.2 reading multiplied with 0.7 (0.7=13.8/19.6) is an estimate of UVB irradiance for this specific lamp. If you do so, always make sure, that the calculated (effective) irradiance is valid. The calculated value is not valid, if the lamp's spectrum is not measured in the relevant range.

Ranges
total ( 0 nm - 0 nm) 12700 µW/cm² = 127 W/m²
UVC ( 0 nm - 280 nm) 0 µW/cm² = 0 W/m²
non-terrestrial ( 0 nm - 290 nm) 0 µW/cm² = 0 W/m²
total2 ( 250 nm - 880 nm) 12700 µW/cm² = 127 W/m²
UVB (EU) ( 280 nm - 315 nm) 1.21 µW/cm² = 0.0121 W/m²
UVB (US) ( 280 nm - 320 nm) 2.64 µW/cm² = 0.0264 W/m²
UVA+B ( 280 nm - 380 nm) 292 µW/cm² = 2.92 W/m²
Solar UVB ( 290 nm - 315 nm) 1.21 µW/cm² = 0.0121 W/m²
UVA D3 regulating ( 315 nm - 335 nm) 5.33 µW/cm² = 0.0533 W/m²
UVA (EU) ( 315 nm - 380 nm) 291 µW/cm² = 2.91 W/m²
UVA2 (medical definition) ( 320 nm - 340 nm) 5.1 µW/cm² = 0.051 W/m²
UVA (US) ( 320 nm - 380 nm) 289 µW/cm² = 2.89 W/m²
UVA1 (variant) ( 335 nm - 380 nm) 286 µW/cm² = 2.86 W/m²
UVA1 (medical) ( 340 nm - 400 nm) 492 µW/cm² = 4.92 W/m²
vis. UVA ( 350 nm - 380 nm) 282 µW/cm² = 2.82 W/m²
VIS Rep3 ( 350 nm - 600 nm) 8300 µW/cm² = 83 W/m²
VIS Rep4 ( 350 nm - 700 nm) 12000 µW/cm² = 120 W/m²
purple ( 380 nm - 420 nm) 644 µW/cm² = 6.44 W/m²
VIS ( 380 nm - 780 nm) 12300 µW/cm² = 123 W/m²
VIS2 ( 400 nm - 680 nm) 11000 µW/cm² = 110 W/m²
PAR ( 400 nm - 700 nm) 11500 µW/cm² = 115 W/m²
tmp ( 400 nm - 1100 nm) 12200 µW/cm² = 122 W/m²
blue ( 420 nm - 490 nm) 2780 µW/cm² = 27.8 W/m²
green ( 490 nm - 575 nm) 3570 µW/cm² = 35.7 W/m²
yellow ( 575 nm - 585 nm) 416 µW/cm² = 4.16 W/m²
orange ( 585 nm - 650 nm) 2800 µW/cm² = 28 W/m²
red ( 650 nm - 780 nm) 2100 µW/cm² = 21 W/m²
IRA ( 700 nm - 1400 nm) 691 µW/cm² = 6.91 W/m²
IR2 ( 720 nm - 1100 nm) 404 µW/cm² = 4.04 W/m²
IRB ( 1400 nm - 3000 nm) 0 µW/cm² = 0 W/m²
Actionspectra
Erythema 0.0859 UV-Index
Pyrimidine dimerization of DNA 0.644 µW/cm²
Photoceratitis 0.0602 µW/cm²
Photoconjunctivitis 0 µW/cm²
DNA Damage 0.00073
Vitamin D3 0.124 µW/cm²
Photosynthesis 7980 µW/cm²
Luminosity 32500 lx
Human L-Cone 4880 µW/cm²
Human M-Cone 4000 µW/cm²
Human S-Cone 2130 µW/cm²
CIE X 4390 µW/cm²
CIE Y 4500 µW/cm²
CIE Z 4090 µW/cm²
PAR PPFD 540 µmol/m²/s
Extinction preD3 2.14 e-3*m²/mol
Extinction Tachysterol 8.09 e-3*m²/mol
Exctincition PreD3 1050 m²/mol
Extinction Lumisterol 0.0286 m²/mol
Exctincition Tachysterol 12300 m²/mol
Extinction 7DHC 0 m²/mol
L-Cone 4190 µW/cm²
M-Cone 4420 µW/cm²
S-Cone 3230 µW/cm²
U-Cone 1390 µW/cm²
UVR - ICNIRP 2004 0.0477 Rel Biol Eff
Melatonin Supression 3430 µW/cm²
Blue Light Hazard 2390 µW/cm² (73.4 µW/cm² per 1000 lx)
CIE 174:2006 PreVit D3 0.108 µW/cm²
Lumen Reptil 31800 "pseudo-lx"
Vitamin D3 Degradation 0.438 µW/cm²
Actinic UV 0.0478 µW/cm² (0.0147 mW/klm)
Exctincition Lumisterol 143 m²/mol
Exctincition 7DHC 34.8 m²/mol
Exctincition Toxisterols 234 m²/mol
Broadbandmeters
Solarmeter 6.2 (UVB, pre 2010) 5 µW/cm²
Solarmeter 6.5 (UV-Index, pre 2010) 0.063
Leybold UVB 2.12 µW/cm²
Leybold UVA 187 µW/cm²
Leybold UVC 0 µW/cm²
DeltaOhm UVB 6.15 µW/cm²
DeltaOhm UVC 0.709 µW/cm²
Vernier UVB 0.36 µW/cm²
Vernier UVA 82.1 µW/cm²
Gröbel UVA 207 µW/cm²
Gröbel UVB 0.808 µW/cm²
Gröbel UVC -0.00109 µW/cm²
Luxmeter 32700 lx
Solarmeter 6.4 (D3) 0.197 IU/min
UVX-31 10.3 µW/cm²
IL UVB 0.00198 µW/cm²
IL UVA 263 µW/cm²
Solarmeter 6.5 (UVI, post 2010) 0.0452 UV-Index
Solarmeter 6.2 (UVB, post 2010) 2.35 µW/cm² (Solarmeter Ratio = 51.9)
Solarmeter AlGaN 6.5 UVI sensor 1.03 UV Index
GenUV 7.1 UV-Index 0.145 UV-Index
Solarmeter 10.0 (Global Power) (manuf.) 136 W/m²
Solarmeter 4.0 (UVA) 5.19 mW/cm²
LS122 (manuf.) 0.0947 W/m²
ISM400 (first guess) 101 W/m²
LS122 (assumption) 5.07 W/m²
ISM400_new 84.2 W/m²
Solarmeter 10.0 (Global Power) (assumption) 133 W/m²