CCT:1019
6156K
CRI DC:1017
2.04E-2
CRI R01:1002
76.6 (6156K)
CRI R02:1003
23.3 (6156K)
CRI R03:1004
-26.7 (6156K)
CRI R04:1005
-112.9 (6156K)
CRI R05:1006
-105.7 (6156K)
CRI R06:1007
-85.4 (6156K)
CRI R07:1008
1.6 (6156K)
CRI R08:1009
52.5 (6156K)
CRI R09:1010
-197.2 (6156K)
CRI R10:1011
33.4 (6156K)
CRI R11:1012
-116.5 (6156K)
CRI R12:1013
-40.0 (6156K)
CRI R13:1014
19.7 (6156K)
CRI R14:1015
14.7 (6156K)
CRI R15:1016
82.2 (6156K)
CRI Ra:1001
-22.1 (6156K)
DC<5.4E-3:1018
false
Spectrum 810: TG-RZMVB125-001 Edit
DeleteMeasurement
Brand |
Repti-Zoo Brand by Dongguan ETAN Pet Supplies Co., Ltd., located in China. http://www.repti-zoo.com/en/index.php. |
---|---|
Lamp Product |
ReptiZoo Super Sun UV 125W Mercury Vapour Bulb |
Lamp ID |
TG-RZMVB125-001 (10/2024) Sent for testing |
Spectrometer | FLAME UV-Vis (E) |
Ballast | - no ballast or default/unknown ballast - |
Reflector | |
Distance | 60 cm |
Age | 100 hours |
Originator (measurement) | Thomas Griffiths |
Colorimetry
Colorimetry is the science to describe physically the human color perception. The wavelength range 380 nm - 780 nm is visible to humans and detected by three different photoreceptors. Many Reptiles see the range 350 nm - 800 nm and have an additional UV photoreceptor in their retina.
Whereas a spectrometer measures the intensity in every tiny wavelength interval resulting in thousands of individual intensities, the human eye only measures three intensities detected by the three cones. The same is true for the reptile eye with usually three or four photoreceptors. Effectively the detailled spectrum displayed above reduces to a much compacter bar graph displayed below. The photoreceptor sensitivites from these L-Cone, M-Cone, S-Cone, and U-Cone are used, they are chosen as an average of measured reptile photoreceptor sensitivity curves. The bar graph also shows as reference the intensity seen by the three or four photoreceptors for average sunlight (id 1).
From these three numbers the colour coordinate and the correlated colour temperature for humans are calculated using the CIE standard method. I adapted this concept to a "3 cone reptile (M,S,U)" and a "4 cone reptile (L,M,S,U)". I am sure, that this adaption to other colour spaces makes sense mathematically and this is also done in scientific research regarding colour vision of animals, however I have not seen calculation of colour temperatures for other animals in the scientific literature. Even if it is hypothetical, at least this shows, how arbitrary the colour temperature is, and that the colour temperature calculated for humans does not apply to reptiles. The colour spaces also show the colour coordinates of different phases of daylight ((ids 1, 338 – 451, 511 – 513 ), indicated by crosses, coloured in the appriximate colour perceived by a human.
Human (CIE) | 3 cone reptile | 4 cone reptile | |
---|---|---|---|
Cone Excitation | |||
Colour Coordinate | ( 0.31 ; 0.37 ) | ( 0.13 ; 0.37 ) | ( 0.25 ; 0.095 ; 0.28 ) |
CCT | 6200 Kelvin | 0 Kelvin | 9900 Kelvin |
distance | 0 | 0.15 | |
colour space | 3-D-graph not implemented yet |
Vitamin D3 Analysis
Vitamin D3 is produced by UVB radiation around 300 nm. 7DHC/ProD3 present in the skin is converted to PreD3 when absorbing an UV photon. PreD3 can be converted back to ProD3, to Lumisterol, or to Tachysterol when absorbing another UV photon or can be converted to Vitamin D3 in a warm environment.
This process prevents any overdose of vitamin D3 from UV radiation with a spectrum similar to sunlight. As a comparison the solar spectra at 20°(id:14) and at 85°(id:21) solar angle are shown.
The ratio of the two solarmeters 6.2 (UVB) and 6.5 (UV index) readings has proven a useful and very simply number to acess the spectral shape in the vitamin-d3-active region.
Effective Irradiances
Effective irradiances are calculated for all ranges, actionspectra and radiometers currently present in this database.
The calculation method is a numerical implementation (Simpson's rule) of the formula
To learn more about calculating effective irradiances and radiometers I recommend this excellent report on UVB meters: Characterizing the Performance of Integral Measuring UV-Meters (pdf).
The numbers in the following tables can also be used to estimate certain (effective) irradiances from radiomer readings. Example: If the database lists
- range: UVB (US) = 13.8 µW/cm²
- radiometer: Solarmeter 6.2 = 19.6 µW/cm²
total ( 0 nm - 0 nm) 2240 µW/cm² = 22.4 W/m² UVC ( 0 nm - 280 nm) 0 µW/cm² = 0 W/m² non-terrestrial ( 0 nm - 290 nm) 1.15 µW/cm² = 0.0115 W/m² total2 ( 250 nm - 880 nm) 2240 µW/cm² = 22.4 W/m² UVB (EU) ( 280 nm - 315 nm) 63 µW/cm² = 0.63 W/m² UVB (US) ( 280 nm - 320 nm) 69.9 µW/cm² = 0.699 W/m² UVA+B ( 280 nm - 380 nm) 580 µW/cm² = 5.8 W/m² Solar UVB ( 290 nm - 315 nm) 61.8 µW/cm² = 0.618 W/m² UVA D3 regulating ( 315 nm - 335 nm) 40.6 µW/cm² = 0.406 W/m² UVA (EU) ( 315 nm - 380 nm) 517 µW/cm² = 5.17 W/m² UVA2 (medical definition) ( 320 nm - 340 nm) 46.5 µW/cm² = 0.465 W/m² UVA (US) ( 320 nm - 380 nm) 510 µW/cm² = 5.1 W/m² UVA1 (variant) ( 335 nm - 380 nm) 477 µW/cm² = 4.77 W/m² UVA1 (medical) ( 340 nm - 400 nm) 482 µW/cm² = 4.82 W/m² vis. UVA ( 350 nm - 380 nm) 448 µW/cm² = 4.48 W/m² VIS Rep3 ( 350 nm - 600 nm) 1790 µW/cm² = 17.9 W/m² VIS Rep4 ( 350 nm - 700 nm) 1890 µW/cm² = 18.9 W/m² purple ( 380 nm - 420 nm) 197 µW/cm² = 1.97 W/m² VIS ( 380 nm - 780 nm) 1560 µW/cm² = 15.6 W/m² VIS2 ( 400 nm - 680 nm) 1400 µW/cm² = 14 W/m² PAR ( 400 nm - 700 nm) 1430 µW/cm² = 14.3 W/m² tmp ( 400 nm - 1100 nm) 1650 µW/cm² = 16.5 W/m² blue ( 420 nm - 490 nm) 361 µW/cm² = 3.61 W/m² green ( 490 nm - 575 nm) 462 µW/cm² = 4.62 W/m² yellow ( 575 nm - 585 nm) 308 µW/cm² = 3.08 W/m² orange ( 585 nm - 650 nm) 60.7 µW/cm² = 0.607 W/m² red ( 650 nm - 780 nm) 170 µW/cm² = 1.7 W/m² IRA ( 700 nm - 1400 nm) 217 µW/cm² = 2.17 W/m² IR2 ( 720 nm - 1100 nm) 191 µW/cm² = 1.91 W/m² IRB ( 1400 nm - 3000 nm) 0 µW/cm² = 0 W/m²
Erythema 3.42 UV-Index Pyrimidine dimerization of DNA 24.7 µW/cm² Photoceratitis 5.94 µW/cm² Photoconjunctivitis 0.343 µW/cm² DNA Damage 0.888 Vitamin D3 12.8 µW/cm² Photosynthesis 911 µW/cm² Luminosity 5260 lx Human L-Cone 771 µW/cm² Human M-Cone 686 µW/cm² Human S-Cone 357 µW/cm² CIE X 631 µW/cm² CIE Y 749 µW/cm² CIE Z 623 µW/cm² PAR 7300000 mol photons Extinction preD3 79.4 e-3*m²/mol Extinction Tachysterol 276 e-3*m²/mol Exctincition PreD3 39600 m²/mol Extinction Lumisterol 20.1 m²/mol Exctincition Tachysterol 367000 m²/mol Extinction 7DHC 22.9 m²/mol L-Cone 647 µW/cm² M-Cone 248 µW/cm² S-Cone 738 µW/cm² U-Cone 984 µW/cm² UVR - ICNIRP 2004 3.45 Rel Biol Eff Melatonin Supression 403 µW/cm² Blue Light Hazard 411 µW/cm² (78.1 µW/cm² per 1000 lx) CIE 174:2006 PreVit D3 13.3 µW/cm² Lumen Reptil 5460 "pseudo-lx" Vitamin D3 Degradation 13.2 µW/cm² Actinic UV 3.38 µW/cm² (6.43 mW/klm) Exctincition Lumisterol 26800 m²/mol Exctincition 7DHC 28200 m²/mol Exctincition Toxisterols 5020 m²/mol
Solarmeter 6.2 (UVB, pre 2010) 74 µW/cm² Solarmeter 6.5 (UV-Index, pre 2010) 3.67 Leybold UVB 57 µW/cm² Leybold UVA 353 µW/cm² Leybold UVC 0.0164 µW/cm² DeltaOhm UVB 90.4 µW/cm² DeltaOhm UVC 12.3 µW/cm² Vernier UVB 21 µW/cm² Vernier UVA 213 µW/cm² Gröbel UVA 445 µW/cm² Gröbel UVB 32 µW/cm² Gröbel UVC 0.0655 µW/cm² Luxmeter 5710 lx Solarmeter 6.4 (D3) 11.5 IU/min UVX-31 111 µW/cm² IL UVB 0.0302 µW/cm² IL UVA 470 µW/cm² Solarmeter 6.5 (UVI, post 2010) 2.86 UV-Index Solarmeter 6.2 (UVB, post 2010) 42 µW/cm² (Solarmeter Ratio = 14.7) Solarmeter AlGaN 6.5 UVI sensor 42.2 UV Index GenUV 7.1 UV-Index 2.27 UV-Index Solarmeter 10.0 (Global Power) (manuf.) 20 W/m² Solarmeter 4.0 (UVA) 6.29 mW/cm² LS122 (manuf.) 0.0949 W/m² ISM400 (first guess) 13.4 W/m² LS122 (assumption) 0.683 W/m² ISM400_new 11.5 W/m² Solarmeter 10.0 (Global Power) (assumption) 18 W/m²