Reptile Lamp Database

Spectrum 775: SW86 Edit
Delete

Full Spectrum

CCT:1019 3266K
CRI DC:1017 3,00E-3
CRI R01:1002 91,4 (3266K)
CRI R02:1003 89,1 (3266K)
CRI R03:1004 73,4 (3266K)
CRI R04:1005 90,1 (3266K)
CRI R05:1006 95,2 (3266K)
CRI R06:1007 90,5 (3266K)
CRI R07:1008 84,3 (3266K)
CRI R08:1009 68,1 (3266K)
CRI R09:1010 22,0 (3266K)
CRI R10:1011 66,0 (3266K)
CRI R11:1012 91,1 (3266K)
CRI R12:1013 72,1 (3266K)
CRI R13:1014 91,8 (3266K)
CRI R14:1015 82,9 (3266K)
CRI R15:1016 81,1 (3266K)
CRI Ra:1001 85,2 (3266K)
DC<5.4E-3:1018 true
X:1022 60,81
Y:1023 58,38
Z:1024 24,60
x:1026 0,4229
y:1027 0,4060
z:1028 0,1711

Measurement

Brand Philips
Koninklijke Philips Electronics N.V. http://www.philips.com/
Lamp Product MasterColor CDM-R Elite PAR30L 70W/930 40D
Order Code 241904XX Made in Belgium
Lamp ID SW86 (01/2024)
Spectrometer USB2000+
Ballast - no ballast or default/unknown ballast -
Reflector
Distance 50 cm
Age 1 hours
Originator (measurement) Sarina Wunderlich
Database entry created: Sarina Wunderlich 25/Feb/2024 ; updated: Sarina Wunderlich 25/Feb/2024

Colorimetry

Colorimetry is the science to describe physically the human color perception. The wavelength range 380 nm - 780 nm is visible to humans and detected by three different photoreceptors. Many Reptiles see the range 350 nm - 800 nm and have an additional UV photoreceptor in their retina.

Spectrum in the visible wavelength range

Whereas a spectrometer measures the intensity in every tiny wavelength interval resulting in thousands of individual intensities, the human eye only measures three intensities detected by the three cones. The same is true for the reptile eye with usually three or four photoreceptors. Effectively the detailled spectrum displayed above reduces to a much compacter bar graph displayed below. The photoreceptor sensitivites from these L-Cone, M-Cone, S-Cone, and U-Cone are used, they are chosen as an average of measured reptile photoreceptor sensitivity curves. The bar graph also shows as reference the intensity seen by the three or four photoreceptors for average sunlight (id 1).

From these three numbers the colour coordinate and the correlated colour temperature for humans are calculated using the CIE standard method. I adapted this concept to a "3 cone reptile (M,S,U)" and a "4 cone reptile (L,M,S,U)". I am sure, that this adaption to other colour spaces makes sense mathematically and this is also done in scientific research regarding colour vision of animals, however I have not seen calculation of colour temperatures for other animals in the scientific literature. Even if it is hypothetical, at least this shows, how arbitrary the colour temperature is, and that the colour temperature calculated for humans does not apply to reptiles. The colour spaces also show the colour coordinates of different phases of daylight ((ids 1, 338451, 511513 ), indicated by crosses, coloured in the appriximate colour perceived by a human.

Human (CIE) 3 cone reptile 4 cone reptile
Cone Excitation
Colour Coordinate ( 0.44 ; 0.4 ) ( 0.52 ; 0.37 ) ( 0.51 ; 0.25 ; 0.18 )
CCT 3000 Kelvin 3600 Kelvin 3000 Kelvin
distance 0.053 0.05
colour space 3-D-graph not implemented yet

Vitamin D3 Analysis

Vitamin D3 is produced by UVB radiation around 300 nm. 7DHC/ProD3 present in the skin is converted to PreD3 when absorbing an UV photon. PreD3 can be converted back to ProD3, to Lumisterol, or to Tachysterol when absorbing another UV photon or can be converted to Vitamin D3 in a warm environment.

This process prevents any overdose of vitamin D3 from UV radiation with a spectrum similar to sunlight. As a comparison the solar spectra at 20°(id:14) and at 85°(id:21) solar angle are shown.

Spectrum in the vitamin D3 active wavelength range

The ratio of the two solarmeters 6.2 (UVB) and 6.5 (UV index) readings has proven a useful and very simply number to acess the spectral shape in the vitamin-d3-active region.

Effective Irradiances

Effective irradiances are calculated for all ranges, actionspectra and radiometers currently present in this database.

The calculation method is a numerical implementation (Simpson's rule) of the formula

To learn more about calculating effective irradiances and radiometers I recommend this excellent report on UVB meters: Characterizing the Performance of Integral Measuring UV-Meters (pdf).

The numbers in the following tables can also be used to estimate certain (effective) irradiances from radiomer readings. Example: If the database lists

  • range: UVB (US) = 13.8 µW/cm²
  • radiometer: Solarmeter 6.2 = 19.6 µW/cm²
then any Solarmeter 6.2 reading multiplied with 0.7 (0.7=13.8/19.6) is an estimate of UVB irradiance for this specific lamp. If you do so, always make sure, that the calculated (effective) irradiance is valid. The calculated value is not valid, if the lamp's spectrum is not measured in the relevant range.

Ranges
total ( 0 nm - 0 nm) 16000 µW/cm² = 160 W/m²
UVC ( 0 nm - 280 nm) 0 µW/cm² = 0 W/m²
non-terrestrial ( 0 nm - 290 nm) 0 µW/cm² = 0 W/m²
total2 ( 250 nm - 880 nm) 16000 µW/cm² = 160 W/m²
UVB (EU) ( 280 nm - 315 nm) 4.96 µW/cm² = 0.0496 W/m²
UVB (US) ( 280 nm - 320 nm) 6.74 µW/cm² = 0.0674 W/m²
UVA+B ( 280 nm - 380 nm) 145 µW/cm² = 1.45 W/m²
Solar UVB ( 290 nm - 315 nm) 4.96 µW/cm² = 0.0496 W/m²
UVA D3 regulating ( 315 nm - 335 nm) 5.97 µW/cm² = 0.0597 W/m²
UVA (EU) ( 315 nm - 380 nm) 140 µW/cm² = 1.4 W/m²
UVA2 (medical definition) ( 320 nm - 340 nm) 5.3 µW/cm² = 0.053 W/m²
UVA (US) ( 320 nm - 380 nm) 138 µW/cm² = 1.38 W/m²
UVA1 (variant) ( 335 nm - 380 nm) 134 µW/cm² = 1.34 W/m²
UVA1 (medical) ( 340 nm - 400 nm) 233 µW/cm² = 2.33 W/m²
vis. UVA ( 350 nm - 380 nm) 129 µW/cm² = 1.29 W/m²
VIS Rep3 ( 350 nm - 600 nm) 7550 µW/cm² = 75.5 W/m²
VIS Rep4 ( 350 nm - 700 nm) 13000 µW/cm² = 130 W/m²
purple ( 380 nm - 420 nm) 312 µW/cm² = 3.12 W/m²
VIS ( 380 nm - 780 nm) 13800 µW/cm² = 138 W/m²
PAR ( 400 nm - 700 nm) 12800 µW/cm² = 128 W/m²
blue ( 420 nm - 490 nm) 1650 µW/cm² = 16.5 W/m²
green ( 490 nm - 575 nm) 3660 µW/cm² = 36.6 W/m²
yellow ( 575 nm - 585 nm) 366 µW/cm² = 3.66 W/m²
orange ( 585 nm - 650 nm) 5490 µW/cm² = 54.9 W/m²
red ( 650 nm - 780 nm) 2350 µW/cm² = 23.5 W/m²
IRA ( 700 nm - 1400 nm) 3000 µW/cm² = 30 W/m²
IRB ( 1400 nm - 3000 nm) 0 µW/cm² = 0 W/m²
Actionspectra
Erythema 0.411 UV-Index
Pyrimidine dimerization of DNA 3.64 µW/cm²
Photoceratitis 0.596 µW/cm²
Photoconjunctivitis 0.0101 µW/cm²
DNA Damage 0.0324
Vitamin D3 1.94 µW/cm²
Photosynthesis 8370 µW/cm²
Luminosity 43100 lx
Human L-Cone 6760 µW/cm²
Human M-Cone 4710 µW/cm²
Human S-Cone 1330 µW/cm²
CIE X 6550 µW/cm²
CIE Y 5980 µW/cm²
CIE Z 2480 µW/cm²
PAR 62000000 mol photons
Extinction preD3 8.8 e-3*m²/mol
Extinction Tachysterol 29.3 e-3*m²/mol
Exctincition PreD3 3980 m²/mol
Extinction Lumisterol 1.67 m²/mol
Exctincition Tachysterol 39900 m²/mol
Extinction 7DHC 1.01 m²/mol
L-Cone 6140 µW/cm²
M-Cone 3070 µW/cm²
S-Cone 2220 µW/cm²
U-Cone 662 µW/cm²
UVR - ICNIRP 2004 0.339 Rel Biol Eff
Melatonin Supression 2010 µW/cm²
Blue Light Hazard 1530 µW/cm² (35.5 µW/cm² per 1000 lx)
CIE 174:2006 PreVit D3 2.23 µW/cm²
Lumen Reptil 31900 "pseudo-lx"
Vitamin D3 Degradation 1.41 µW/cm²
Actinic UV 0.326 µW/cm² (0.0756 mW/klm)
Exctincition Lumisterol 2290 m²/mol
Exctincition 7DHC 1340 m²/mol
Exctincition Toxisterols 592 m²/mol
Broadbandmeters
Solarmeter 6.2 (UVB, pre 2010) 8.44 µW/cm²
Solarmeter 6.5 (UV-Index, pre 2010) 0.552
Leybold UVB 5.97 µW/cm²
Leybold UVA 103 µW/cm²
Leybold UVC 0 µW/cm²
DeltaOhm UVB 9.71 µW/cm²
DeltaOhm UVC 1.37 µW/cm²
Vernier UVB 2.76 µW/cm²
Vernier UVA 51.7 µW/cm²
Gröbel UVA 112 µW/cm²
Gröbel UVB 3.63 µW/cm²
Gröbel UVC 0.00212 µW/cm²
Solarmeter 6.4 (D3) 1.72 IU/min
UVX-31 15.3 µW/cm²
IL UVB 0.00372 µW/cm²
IL UVA 129 µW/cm²
Solarmeter 6.5 (UVI, post 2010) 0.44 UV-Index
Solarmeter 6.2 (UVB, post 2010) 4.56 µW/cm² (Solarmeter Ratio = 10.4)
Solarmeter AlGaN 6.5 UVI sensor 4.62 UV Index
GenUV 7.1 UV-Index 0.268 UV-Index
Solarmeter 10.0 (Global Power) 198 W/m²
Solarmeter 4.0 (UVA) 2.44 mW/cm²
LS122 1.96 W/m²
ISM400 176 W/m²