Reptile Lamp Database

Spectrum 719: SW81 Edit
Delete

Full Spectrum

CCT:1019 4024K
CRI DC:1017 3,02E-3
CRI R01:1002 78,8 (4024K)
CRI R02:1003 88,1 (4024K)
CRI R03:1004 94,7 (4024K)
CRI R04:1005 78,6 (4024K)
CRI R05:1006 78,7 (4024K)
CRI R06:1007 83,7 (4024K)
CRI R07:1008 85,4 (4024K)
CRI R08:1009 62,0 (4024K)
CRI R09:1010 2,4 (4024K)
CRI R10:1011 71,3 (4024K)
CRI R11:1012 76,1 (4024K)
CRI R12:1013 55,0 (4024K)
CRI R13:1014 81,1 (4024K)
CRI R14:1015 97,1 (4024K)
CRI R15:1016 72,1 (4024K)
CRI Ra:1001 81,2 (4024K)
DC<5.4E-3:1018 true
X:1022 18,40
Y:1023 18,52
Z:1024 11,32
x:1026 0,3815
y:1027 0,3839
z:1028 0,2346

Measurement

Brand other
other
Lamp Product XXXLutz LED Panel
Lamp ID SW81 (07/2021)
Spectrometer USB2000+
Ballast - no ballast or default/unknown ballast -
Reflector
Distance 10 cm
Age 2 hours
Originator (measurement) Sarina Wunderlich
Database entry created: Sarina Wunderlich 10/Jul/2023 ; updated: Sarina Wunderlich 10/Jul/2023

Colorimetry

Colorimetry is the science to describe physically the human color perception. The wavelength range 380 nm - 780 nm is visible to humans and detected by three different photoreceptors. Many Reptiles see the range 350 nm - 800 nm and have an additional UV photoreceptor in their retina.

Spectrum in the visible wavelength range

Whereas a spectrometer measures the intensity in every tiny wavelength interval resulting in thousands of individual intensities, the human eye only measures three intensities detected by the three cones. The same is true for the reptile eye with usually three or four photoreceptors. Effectively the detailled spectrum displayed above reduces to a much compacter bar graph displayed below. The photoreceptor sensitivites from these L-Cone, M-Cone, S-Cone, and U-Cone are used, they are chosen as an average of measured reptile photoreceptor sensitivity curves. The bar graph also shows as reference the intensity seen by the three or four photoreceptors for average sunlight (id 1).

From these three numbers the colour coordinate and the correlated colour temperature for humans are calculated using the CIE standard method. I adapted this concept to a "3 cone reptile (M,S,U)" and a "4 cone reptile (L,M,S,U)". I am sure, that this adaption to other colour spaces makes sense mathematically and this is also done in scientific research regarding colour vision of animals, however I have not seen calculation of colour temperatures for other animals in the scientific literature. Even if it is hypothetical, at least this shows, how arbitrary the colour temperature is, and that the colour temperature calculated for humans does not apply to reptiles. The colour spaces also show the colour coordinates of different phases of daylight ((ids 1, 338451, 511513 ), indicated by crosses, coloured in the appriximate colour perceived by a human.

Human (CIE) 3 cone reptile 4 cone reptile
Cone Excitation
Colour Coordinate ( 0.38 ; 0.38 ) ( 0.58 ; 0.41 ) ( 0.46 ; 0.31 ; 0.22 )
CCT 4000 Kelvin 3200 Kelvin 3300 Kelvin
distance 0.11 0.058
colour space 3-D-graph not implemented yet

Vitamin D3 Analysis

Vitamin D3 is produced by UVB radiation around 300 nm. 7DHC/ProD3 present in the skin is converted to PreD3 when absorbing an UV photon. PreD3 can be converted back to ProD3, to Lumisterol, or to Tachysterol when absorbing another UV photon or can be converted to Vitamin D3 in a warm environment.

This process prevents any overdose of vitamin D3 from UV radiation with a spectrum similar to sunlight. As a comparison the solar spectra at 20°(id:14) and at 85°(id:21) solar angle are shown.

Spectrum in the vitamin D3 active wavelength range

The ratio of the two solarmeters 6.2 (UVB) and 6.5 (UV index) readings has proven a useful and very simply number to acess the spectral shape in the vitamin-d3-active region.

Effective Irradiances

Effective irradiances are calculated for all ranges, actionspectra and radiometers currently present in this database.

The calculation method is a numerical implementation (Simpson's rule) of the formula

To learn more about calculating effective irradiances and radiometers I recommend this excellent report on UVB meters: Characterizing the Performance of Integral Measuring UV-Meters (pdf).

The numbers in the following tables can also be used to estimate certain (effective) irradiances from radiomer readings. Example: If the database lists

  • range: UVB (US) = 13.8 µW/cm²
  • radiometer: Solarmeter 6.2 = 19.6 µW/cm²
then any Solarmeter 6.2 reading multiplied with 0.7 (0.7=13.8/19.6) is an estimate of UVB irradiance for this specific lamp. If you do so, always make sure, that the calculated (effective) irradiance is valid. The calculated value is not valid, if the lamp's spectrum is not measured in the relevant range.

Ranges
total ( 0 nm - 0 nm) 4120 µW/cm² = 41.2 W/m²
UVC ( 0 nm - 280 nm) 22.5 µW/cm² = 0.225 W/m²
non-terrestrial ( 0 nm - 290 nm) 22.5 µW/cm² = 0.225 W/m²
total2 ( 250 nm - 880 nm) 4080 µW/cm² = 40.8 W/m²
UVB (EU) ( 280 nm - 315 nm) 1.49 µW/cm² = 0.0149 W/m²
UVB (US) ( 280 nm - 320 nm) 1.94 µW/cm² = 0.0194 W/m²
UVA+B ( 280 nm - 380 nm) 5.62 µW/cm² = 0.0562 W/m²
Solar UVB ( 290 nm - 315 nm) 1.49 µW/cm² = 0.0149 W/m²
UVA D3 regulating ( 315 nm - 335 nm) 1.5 µW/cm² = 0.015 W/m²
UVA (EU) ( 315 nm - 380 nm) 4.13 µW/cm² = 0.0413 W/m²
UVA2 (medical definition) ( 320 nm - 340 nm) 1.32 µW/cm² = 0.0132 W/m²
UVA (US) ( 320 nm - 380 nm) 3.69 µW/cm² = 0.0369 W/m²
UVA1 (variant) ( 335 nm - 380 nm) 2.63 µW/cm² = 0.0263 W/m²
UVA1 (medical) ( 340 nm - 400 nm) 3.56 µW/cm² = 0.0356 W/m²
vis. UVA ( 350 nm - 380 nm) 1.71 µW/cm² = 0.0171 W/m²
VIS Rep3 ( 350 nm - 600 nm) 2740 µW/cm² = 27.4 W/m²
VIS Rep4 ( 350 nm - 700 nm) 3980 µW/cm² = 39.8 W/m²
purple ( 380 nm - 420 nm) 4.76 µW/cm² = 0.0476 W/m²
VIS ( 380 nm - 780 nm) 4060 µW/cm² = 40.6 W/m²
PAR ( 400 nm - 700 nm) 3980 µW/cm² = 39.8 W/m²
blue ( 420 nm - 490 nm) 759 µW/cm² = 7.59 W/m²
green ( 490 nm - 575 nm) 1400 µW/cm² = 14 W/m²
yellow ( 575 nm - 585 nm) 233 µW/cm² = 2.33 W/m²
orange ( 585 nm - 650 nm) 1260 µW/cm² = 12.6 W/m²
red ( 650 nm - 780 nm) 410 µW/cm² = 4.1 W/m²
IRA ( 700 nm - 1400 nm) 103 µW/cm² = 1.03 W/m²
IRB ( 1400 nm - 3000 nm) 0 µW/cm² = 0 W/m²
Actionspectra
Erythema 0.112 UV-Index
Pyrimidine dimerization of DNA 1.07 µW/cm²
Photoceratitis 0.174 µW/cm²
Photoconjunctivitis 0.00294 µW/cm²
DNA Damage 0.00939
Vitamin D3 0.569 µW/cm²
Photosynthesis 2570 µW/cm²
Luminosity 14300 lx
Human L-Cone 2190 µW/cm²
Human M-Cone 1690 µW/cm²
Human S-Cone 614 µW/cm²
CIE X 1980 µW/cm²
CIE Y 2000 µW/cm²
CIE Z 1220 µW/cm²
PAR 18600000 mol photons
Extinction preD3 2.54 e-3*m²/mol
Extinction Tachysterol 8.4 e-3*m²/mol
Exctincition PreD3 1130 m²/mol
Extinction Lumisterol 0.488 m²/mol
Exctincition Tachysterol 11100 m²/mol
Extinction 7DHC 0.295 m²/mol
L-Cone 1920 µW/cm²
M-Cone 1290 µW/cm²
S-Cone 918 µW/cm²
U-Cone 17.4 µW/cm²
UVR - ICNIRP 2004 0.0921 Rel Biol Eff
Melatonin Supression 915 µW/cm²
Blue Light Hazard 639 µW/cm² (44.7 µW/cm² per 1000 lx)
CIE 174:2006 PreVit D3 0.654 µW/cm²
Lumen Reptil 10800 "pseudo-lx"
Vitamin D3 Degradation 0.407 µW/cm²
Actinic UV 0.0894 µW/cm² (0.0624 mW/klm)
Exctincition Lumisterol 670 m²/mol
Exctincition 7DHC 387 m²/mol
Exctincition Toxisterols 151 m²/mol
Broadbandmeters
Solarmeter 6.2 (UVB, pre 2010) 2.15 µW/cm²
Solarmeter 6.5 (UV-Index, pre 2010) 0.159
Leybold UVB 1.71 µW/cm²
Leybold UVA 2.69 µW/cm²
Leybold UVC 0 µW/cm²
DeltaOhm UVB 2.63 µW/cm²
DeltaOhm UVC 0.38 µW/cm²
Vernier UVB 0.864 µW/cm²
Vernier UVA 2.77 µW/cm²
Gröbel UVA 3.48 µW/cm²
Gröbel UVB 1.06 µW/cm²
Gröbel UVC 0.000583 µW/cm²
Solarmeter 6.4 (D3) 0.497 IU/min
UVX-31 2.96 µW/cm²
IL UVB 0.000928 µW/cm²
IL UVA 3.18 µW/cm²
Solarmeter 6.5 (UVI, post 2010) 0.129 UV-Index
Solarmeter 6.2 (UVB, post 2010) 1.26 µW/cm² (Solarmeter Ratio = 9.79)
Solarmeter AlGaN 6.5 UVI sensor 1.34 UV Index
GenUV 7.1 UV-Index 0.067 UV-Index
Solarmeter 10.0 (Global Power) 45.8 W/m²
Solarmeter 4.0 (UVA) 0.0488 mW/cm²
LS122 0.021 W/m²
ISM400 33.8 W/m²