Reptile Lamp Database

Spectrum 697: SW67 Edit
Delete

Full Spectrum

CCT:1019 14167K
CRI DC:1017 2,03E-2
CRI R01:1002 4,0 (14167K)
CRI R02:1003 35,8 (14167K)
CRI R03:1004 27,8 (14167K)
CRI R04:1005 15,7 (14167K)
CRI R05:1006 8,2 (14167K)
CRI R06:1007 -18,8 (14167K)
CRI R07:1008 5,5 (14167K)
CRI R08:1009 -8,0 (14167K)
CRI R09:1010 -265,2 (14167K)
CRI R10:1011 -81,3 (14167K)
CRI R11:1012 -8,4 (14167K)
CRI R12:1013 -19,1 (14167K)
CRI R13:1014 14,0 (14167K)
CRI R14:1015 58,6 (14167K)
CRI R15:1016 -1,9 (14167K)
CRI Ra:1001 8,8 (14167K)
DC<5.4E-3:1018 false
X:1022 0,79
Y:1023 0,93
Z:1024 1,46
x:1026 0,2474
y:1027 0,2929
z:1028 0,4597

Measurement

Brand Chinese manufacturer
Lamp Product UVC Desinfection Fluorescent Lamp 25W
Compact Fluorescent Lamp shape, without fluorescent phosphor
Lamp ID SW67 (01/2023)
Spectrometer USB2000+
Ballast - no ballast or default/unknown ballast -
Reflector
Distance 10 cm
Age 0 hours
Originator (measurement) Sarina Wunderlich
Database entry created: Sarina Wunderlich 26/Apr/2023 ; updated: Sarina Wunderlich 26/Apr/2023

Colorimetry

Colorimetry is the science to describe physically the human color perception. The wavelength range 380 nm - 780 nm is visible to humans and detected by three different photoreceptors. Many Reptiles see the range 350 nm - 800 nm and have an additional UV photoreceptor in their retina.

Spectrum in the visible wavelength range

Whereas a spectrometer measures the intensity in every tiny wavelength interval resulting in thousands of individual intensities, the human eye only measures three intensities detected by the three cones. The same is true for the reptile eye with usually three or four photoreceptors. Effectively the detailled spectrum displayed above reduces to a much compacter bar graph displayed below. The photoreceptor sensitivites from these L-Cone, M-Cone, S-Cone, and U-Cone are used, they are chosen as an average of measured reptile photoreceptor sensitivity curves. The bar graph also shows as reference the intensity seen by the three or four photoreceptors for average sunlight (id 1).

From these three numbers the colour coordinate and the correlated colour temperature for humans are calculated using the CIE standard method. I adapted this concept to a "3 cone reptile (M,S,U)" and a "4 cone reptile (L,M,S,U)". I am sure, that this adaption to other colour spaces makes sense mathematically and this is also done in scientific research regarding colour vision of animals, however I have not seen calculation of colour temperatures for other animals in the scientific literature. Even if it is hypothetical, at least this shows, how arbitrary the colour temperature is, and that the colour temperature calculated for humans does not apply to reptiles. The colour spaces also show the colour coordinates of different phases of daylight ((ids 1, 338451, 511513 ), indicated by crosses, coloured in the appriximate colour perceived by a human.

Human (CIE) 3 cone reptile 4 cone reptile
Cone Excitation
Colour Coordinate ( 0.25 ; 0.29 ) ( 0.13 ; 0.56 ) ( 0.19 ; 0.11 ; 0.45 )
CCT 14000 Kelvin 19000 Kelvin 21000 Kelvin
distance 0.25 0.2
colour space 3-D-graph not implemented yet

Vitamin D3 Analysis

Vitamin D3 is produced by UVB radiation around 300 nm. 7DHC/ProD3 present in the skin is converted to PreD3 when absorbing an UV photon. PreD3 can be converted back to ProD3, to Lumisterol, or to Tachysterol when absorbing another UV photon or can be converted to Vitamin D3 in a warm environment.

This process prevents any overdose of vitamin D3 from UV radiation with a spectrum similar to sunlight. As a comparison the solar spectra at 20°(id:14) and at 85°(id:21) solar angle are shown.

Spectrum in the vitamin D3 active wavelength range

The ratio of the two solarmeters 6.2 (UVB) and 6.5 (UV index) readings has proven a useful and very simply number to acess the spectral shape in the vitamin-d3-active region.

Effective Irradiances

Effective irradiances are calculated for all ranges, actionspectra and radiometers currently present in this database.

The calculation method is a numerical implementation (Simpson's rule) of the formula

To learn more about calculating effective irradiances and radiometers I recommend this excellent report on UVB meters: Characterizing the Performance of Integral Measuring UV-Meters (pdf).

The numbers in the following tables can also be used to estimate certain (effective) irradiances from radiomer readings. Example: If the database lists

  • range: UVB (US) = 13.8 µW/cm²
  • radiometer: Solarmeter 6.2 = 19.6 µW/cm²
then any Solarmeter 6.2 reading multiplied with 0.7 (0.7=13.8/19.6) is an estimate of UVB irradiance for this specific lamp. If you do so, always make sure, that the calculated (effective) irradiance is valid. The calculated value is not valid, if the lamp's spectrum is not measured in the relevant range.

Ranges
total ( 0 nm - 0 nm) 1070 µW/cm² = 10.7 W/m²
UVC ( 0 nm - 280 nm) 726 µW/cm² = 7.26 W/m²
non-terrestrial ( 0 nm - 290 nm) 728 µW/cm² = 7.28 W/m²
total2 ( 250 nm - 880 nm) 1060 µW/cm² = 10.6 W/m²
UVB (EU) ( 280 nm - 315 nm) 38.6 µW/cm² = 0.386 W/m²
UVB (US) ( 280 nm - 320 nm) 39.5 µW/cm² = 0.395 W/m²
UVA+B ( 280 nm - 380 nm) 71.7 µW/cm² = 0.717 W/m²
Solar UVB ( 290 nm - 315 nm) 36.3 µW/cm² = 0.363 W/m²
UVA D3 regulating ( 315 nm - 335 nm) 3.29 µW/cm² = 0.0329 W/m²
UVA (EU) ( 315 nm - 380 nm) 33.1 µW/cm² = 0.331 W/m²
UVA2 (medical definition) ( 320 nm - 340 nm) 2.98 µW/cm² = 0.0298 W/m²
UVA (US) ( 320 nm - 380 nm) 32.2 µW/cm² = 0.322 W/m²
UVA1 (variant) ( 335 nm - 380 nm) 29.8 µW/cm² = 0.298 W/m²
UVA1 (medical) ( 340 nm - 400 nm) 30.5 µW/cm² = 0.305 W/m²
vis. UVA ( 350 nm - 380 nm) 28.6 µW/cm² = 0.286 W/m²
VIS Rep3 ( 350 nm - 600 nm) 270 µW/cm² = 2.7 W/m²
VIS Rep4 ( 350 nm - 700 nm) 275 µW/cm² = 2.75 W/m²
purple ( 380 nm - 420 nm) 44.3 µW/cm² = 0.443 W/m²
VIS ( 380 nm - 780 nm) 256 µW/cm² = 2.56 W/m²
PAR ( 400 nm - 700 nm) 246 µW/cm² = 2.46 W/m²
blue ( 420 nm - 490 nm) 93.1 µW/cm² = 0.931 W/m²
green ( 490 nm - 575 nm) 79.1 µW/cm² = 0.791 W/m²
yellow ( 575 nm - 585 nm) 23.6 µW/cm² = 0.236 W/m²
orange ( 585 nm - 650 nm) 3.55 µW/cm² = 0.0355 W/m²
red ( 650 nm - 780 nm) 12 µW/cm² = 0.12 W/m²
IRA ( 700 nm - 1400 nm) 29.9 µW/cm² = 0.299 W/m²
IRB ( 1400 nm - 3000 nm) 0 µW/cm² = 0 W/m²
Actionspectra
Erythema 288 UV-Index
Pyrimidine dimerization of DNA 14.9 µW/cm²
Photoceratitis 178 µW/cm²
Photoconjunctivitis 686 µW/cm²
DNA Damage 727
Vitamin D3 16.5 µW/cm²
Photosynthesis 168 µW/cm²
Luminosity 711 lx
Human L-Cone 101 µW/cm²
Human M-Cone 99.4 µW/cm²
Human S-Cone 90.3 µW/cm²
CIE X 85 µW/cm²
CIE Y 101 µW/cm²
CIE Z 158 µW/cm²
PAR 1280000 mol photons
Extinction preD3 6230 e-3*m²/mol
Extinction Tachysterol 7120 e-3*m²/mol
Exctincition PreD3 6230000 m²/mol
Extinction Lumisterol 3730 m²/mol
Exctincition Tachysterol 8230000 m²/mol
Extinction 7DHC 3620 m²/mol
L-Cone 78.2 µW/cm²
M-Cone 45.4 µW/cm²
S-Cone 188 µW/cm²
U-Cone 103 µW/cm²
UVR - ICNIRP 2004 365 Rel Biol Eff
Melatonin Supression 98.5 µW/cm²
Blue Light Hazard 103 µW/cm² (145 µW/cm² per 1000 lx)
CIE 174:2006 PreVit D3 41.6 µW/cm²
Lumen Reptil 874 "pseudo-lx"
Vitamin D3 Degradation 10.8 µW/cm²
Actinic UV 365 µW/cm² (5140 mW/klm)
Exctincition Lumisterol 3350000 m²/mol
Exctincition 7DHC 3330000 m²/mol
Exctincition Toxisterols 5820000 m²/mol
Broadbandmeters
Solarmeter 6.2 (UVB, pre 2010) 483 µW/cm²
Solarmeter 6.5 (UV-Index, pre 2010) 4.64
Leybold UVB 31.5 µW/cm²
Leybold UVA 22.6 µW/cm²
Leybold UVC 713 µW/cm²
DeltaOhm UVB 44.2 µW/cm²
DeltaOhm UVC 729 µW/cm²
Vernier UVB 16.2 µW/cm²
Vernier UVA 24 µW/cm²
Gröbel UVA 34.9 µW/cm²
Gröbel UVB 26.4 µW/cm²
Gröbel UVC 643 µW/cm²
Solarmeter 6.4 (D3) 14.5 IU/min
UVX-31 40.5 µW/cm²
IL UVB 0.07 µW/cm²
IL UVA 33.5 µW/cm²
Solarmeter 6.5 (UVI, post 2010) 50.1 UV-Index
Solarmeter 6.2 (UVB, post 2010) 142 µW/cm² (Solarmeter Ratio = 2.83)
Solarmeter AlGaN 6.5 UVI sensor 28.7 UV Index
GenUV 7.1 UV-Index 23.7 UV-Index
Solarmeter 10.0 (Global Power) 4.18 W/m²
Solarmeter 4.0 (UVA) 0.497 mW/cm²
LS122 0.0244 W/m²
ISM400 1.81 W/m²