Reptile Lamp Database

Spectrum 638: SW52 Edit
Delete

Full Spectrum

CCT:1019 2830K
CRI DC:1017 3,87E-4
CRI R01:1002 96,9 (2830K)
CRI R02:1003 98,6 (2830K)
CRI R03:1004 66,3 (2830K)
CRI R04:1005 92,8 (2830K)
CRI R05:1006 98,3 (2830K)
CRI R06:1007 97,5 (2830K)
CRI R07:1008 88,0 (2830K)
CRI R08:1009 66,9 (2830K)
CRI R09:1010 11,4 (2830K)
CRI R10:1011 72,9 (2830K)
CRI R11:1012 93,0 (2830K)
CRI R12:1013 78,9 (2830K)
CRI R13:1014 92,3 (2830K)
CRI R14:1015 75,5 (2830K)
CRI R15:1016 94,5 (2830K)
CRI Ra:1001 88,2 (2830K)
DC<5.4E-3:1018 true
X:1022 168,52
Y:1023 153,18
Z:1024 52,64
x:1026 0,4502
y:1027 0,4092
z:1028 0,1406

Measurement

Brand Osram
Osram GmbH http://www.osram.de/
Lamp Product DULUX L 36W 930
Lamp ID SW52 (12/2019)
Spectrometer USB2000+
Ballast - no ballast or default/unknown ballast -
Reflector
Distance 0 cm
Age 500 hours
Originator (measurement) Sarina Wunderlich
Database entry created: Sarina Wunderlich 20/Dec/2022 ; updated: Sarina Wunderlich 20/Dec/2022

Colorimetry

Colorimetry is the science to describe physically the human color perception. The wavelength range 380 nm - 780 nm is visible to humans and detected by three different photoreceptors. Many Reptiles see the range 350 nm - 800 nm and have an additional UV photoreceptor in their retina.

Spectrum in the visible wavelength range

Whereas a spectrometer measures the intensity in every tiny wavelength interval resulting in thousands of individual intensities, the human eye only measures three intensities detected by the three cones. The same is true for the reptile eye with usually three or four photoreceptors. Effectively the detailled spectrum displayed above reduces to a much compacter bar graph displayed below. The photoreceptor sensitivites from these L-Cone, M-Cone, S-Cone, and U-Cone are used, they are chosen as an average of measured reptile photoreceptor sensitivity curves. The bar graph also shows as reference the intensity seen by the three or four photoreceptors for average sunlight (id 1).

From these three numbers the colour coordinate and the correlated colour temperature for humans are calculated using the CIE standard method. I adapted this concept to a "3 cone reptile (M,S,U)" and a "4 cone reptile (L,M,S,U)". I am sure, that this adaption to other colour spaces makes sense mathematically and this is also done in scientific research regarding colour vision of animals, however I have not seen calculation of colour temperatures for other animals in the scientific literature. Even if it is hypothetical, at least this shows, how arbitrary the colour temperature is, and that the colour temperature calculated for humans does not apply to reptiles. The colour spaces also show the colour coordinates of different phases of daylight ((ids 1, 338451, 511513 ), indicated by crosses, coloured in the appriximate colour perceived by a human.

Human (CIE) 3 cone reptile 4 cone reptile
Cone Excitation
Colour Coordinate ( 0.45 ; 0.41 ) ( 0.56 ; 0.34 ) ( 0.54 ; 0.26 ; 0.16 )
CCT 2800 Kelvin 3200 Kelvin 2800 Kelvin
distance 0.035 0.033
colour space 3-D-graph not implemented yet

Vitamin D3 Analysis

Vitamin D3 is produced by UVB radiation around 300 nm. 7DHC/ProD3 present in the skin is converted to PreD3 when absorbing an UV photon. PreD3 can be converted back to ProD3, to Lumisterol, or to Tachysterol when absorbing another UV photon or can be converted to Vitamin D3 in a warm environment.

This process prevents any overdose of vitamin D3 from UV radiation with a spectrum similar to sunlight. As a comparison the solar spectra at 20°(id:14) and at 85°(id:21) solar angle are shown.

Spectrum in the vitamin D3 active wavelength range

The ratio of the two solarmeters 6.2 (UVB) and 6.5 (UV index) readings has proven a useful and very simply number to acess the spectral shape in the vitamin-d3-active region.

Effective Irradiances

Effective irradiances are calculated for all ranges, actionspectra and radiometers currently present in this database.

The calculation method is a numerical implementation (Simpson's rule) of the formula

To learn more about calculating effective irradiances and radiometers I recommend this excellent report on UVB meters: Characterizing the Performance of Integral Measuring UV-Meters (pdf).

The numbers in the following tables can also be used to estimate certain (effective) irradiances from radiomer readings. Example: If the database lists

  • range: UVB (US) = 13.8 µW/cm²
  • radiometer: Solarmeter 6.2 = 19.6 µW/cm²
then any Solarmeter 6.2 reading multiplied with 0.7 (0.7=13.8/19.6) is an estimate of UVB irradiance for this specific lamp. If you do so, always make sure, that the calculated (effective) irradiance is valid. The calculated value is not valid, if the lamp's spectrum is not measured in the relevant range.

Ranges
total ( 0 nm - 0 nm) 4760 µW/cm² = 47.6 W/m²
UVC ( 0 nm - 280 nm) 17.6 µW/cm² = 0.176 W/m²
non-terrestrial ( 0 nm - 290 nm) 17.6 µW/cm² = 0.176 W/m²
total2 ( 250 nm - 880 nm) 4730 µW/cm² = 47.3 W/m²
UVB (EU) ( 280 nm - 315 nm) 3 µW/cm² = 0.03 W/m²
UVB (US) ( 280 nm - 320 nm) 3.57 µW/cm² = 0.0357 W/m²
UVA+B ( 280 nm - 380 nm) 38.1 µW/cm² = 0.381 W/m²
Solar UVB ( 290 nm - 315 nm) 3 µW/cm² = 0.03 W/m²
UVA D3 regulating ( 315 nm - 335 nm) 3.19 µW/cm² = 0.0319 W/m²
UVA (EU) ( 315 nm - 380 nm) 35.1 µW/cm² = 0.351 W/m²
UVA2 (medical definition) ( 320 nm - 340 nm) 3.58 µW/cm² = 0.0358 W/m²
UVA (US) ( 320 nm - 380 nm) 34.6 µW/cm² = 0.346 W/m²
UVA1 (variant) ( 335 nm - 380 nm) 31.9 µW/cm² = 0.319 W/m²
UVA1 (medical) ( 340 nm - 400 nm) 39.1 µW/cm² = 0.391 W/m²
vis. UVA ( 350 nm - 380 nm) 28.6 µW/cm² = 0.286 W/m²
VIS Rep3 ( 350 nm - 600 nm) 2500 µW/cm² = 25 W/m²
VIS Rep4 ( 350 nm - 700 nm) 4350 µW/cm² = 43.5 W/m²
purple ( 380 nm - 420 nm) 111 µW/cm² = 1.11 W/m²
VIS ( 380 nm - 780 nm) 4550 µW/cm² = 45.5 W/m²
PAR ( 400 nm - 700 nm) 4310 µW/cm² = 43.1 W/m²
blue ( 420 nm - 490 nm) 536 µW/cm² = 5.36 W/m²
green ( 490 nm - 575 nm) 1300 µW/cm² = 13 W/m²
yellow ( 575 nm - 585 nm) 213 µW/cm² = 2.13 W/m²
orange ( 585 nm - 650 nm) 1920 µW/cm² = 19.2 W/m²
red ( 650 nm - 780 nm) 477 µW/cm² = 4.77 W/m²
IRA ( 700 nm - 1400 nm) 370 µW/cm² = 3.7 W/m²
IRB ( 1400 nm - 3000 nm) 0 µW/cm² = 0 W/m²
Actionspectra
Erythema 0.54 UV-Index
Pyrimidine dimerization of DNA 1.76 µW/cm²
Photoceratitis 0.767 µW/cm²
Photoconjunctivitis 0.031 µW/cm²
DNA Damage 0.116
Vitamin D3 1.68 µW/cm²
Photosynthesis 2740 µW/cm²
Luminosity 16200 lx
Human L-Cone 2550 µW/cm²
Human M-Cone 1750 µW/cm²
Human S-Cone 405 µW/cm²
CIE X 2470 µW/cm²
CIE Y 2240 µW/cm²
CIE Z 771 µW/cm²
PAR 21100000 mol photons
Extinction preD3 6.71 e-3*m²/mol
Extinction Tachysterol 25.7 e-3*m²/mol
Exctincition PreD3 3620 m²/mol
Extinction Lumisterol 3.62 m²/mol
Exctincition Tachysterol 34700 m²/mol
Extinction 7DHC 5.11 m²/mol
L-Cone 2300 µW/cm²
M-Cone 1090 µW/cm²
S-Cone 659 µW/cm²
U-Cone 192 µW/cm²
UVR - ICNIRP 2004 0.629 Rel Biol Eff
Melatonin Supression 679 µW/cm²
Blue Light Hazard 461 µW/cm² (28.6 µW/cm² per 1000 lx)
CIE 174:2006 PreVit D3 1.77 µW/cm²
Lumen Reptil 11500 "pseudo-lx"
Vitamin D3 Degradation 0.953 µW/cm²
Actinic UV 0.625 µW/cm² (0.387 mW/klm)
Exctincition Lumisterol 4370 m²/mol
Exctincition 7DHC 6250 m²/mol
Exctincition Toxisterols 381 m²/mol
Broadbandmeters
Solarmeter 6.2 (UVB, pre 2010) 4.52 µW/cm²
Solarmeter 6.5 (UV-Index, pre 2010) 0.49
Leybold UVB 3.19 µW/cm²
Leybold UVA 25.2 µW/cm²
Leybold UVC 0.00382 µW/cm²
DeltaOhm UVB 5.39 µW/cm²
DeltaOhm UVC 0.78 µW/cm²
Vernier UVB 1.79 µW/cm²
Vernier UVA 14.1 µW/cm²
Gröbel UVA 29.7 µW/cm²
Gröbel UVB 2.39 µW/cm²
Gröbel UVC -0.00452 µW/cm²
Solarmeter 6.4 (D3) 1.53 IU/min
UVX-31 6.88 µW/cm²
IL UVB 0.00216 µW/cm²
IL UVA 32 µW/cm²
Solarmeter 6.5 (UVI, post 2010) 0.325 UV-Index
Solarmeter 6.2 (UVB, post 2010) 2.34 µW/cm² (Solarmeter Ratio = 7.2)
Solarmeter AlGaN 6.5 UVI sensor 2.66 UV Index
GenUV 7.1 UV-Index 0.14 UV-Index
Solarmeter 10.0 (Global Power) 55.1 W/m²
Solarmeter 4.0 (UVA) 0.6 mW/cm²
LS122 0.4 W/m²
ISM400 43.4 W/m²