Reptile Lamp Database

Spectrum 637: SW51 Edit
Delete

Full Spectrum

CCT:1019 3864K
CRI DC:1017 6,03E-4
CRI R01:1002 95,3 (3864K)
CRI R02:1003 94,5 (3864K)
CRI R03:1004 49,5 (3864K)
CRI R04:1005 89,8 (3864K)
CRI R05:1006 86,6 (3864K)
CRI R06:1007 73,6 (3864K)
CRI R07:1008 82,2 (3864K)
CRI R08:1009 77,5 (3864K)
CRI R09:1010 26,8 (3864K)
CRI R10:1011 47,1 (3864K)
CRI R11:1012 72,2 (3864K)
CRI R12:1013 51,2 (3864K)
CRI R13:1014 93,9 (3864K)
CRI R14:1015 66,2 (3864K)
CRI R15:1016 96,3 (3864K)
CRI Ra:1001 81,1 (3864K)
DC<5.4E-3:1018 true
X:1022 119,23
Y:1023 117,68
Z:1024 71,07
x:1026 0,3871
y:1027 0,3821
z:1028 0,2308

Measurement

Brand Osram
Osram GmbH http://www.osram.de/
Lamp Product DULUX L 840 36W/840 LUMILUX
Lamp ID SW51 (01/2000)
Spectrometer -
Ballast - no ballast or default/unknown ballast -
Reflector
Distance 0 cm
Age 500 hours
Originator (measurement) Sarina Wunderlich
Database entry created: Sarina Wunderlich 20/Dec/2022 ; updated: Sarina Wunderlich 20/Dec/2022

Colorimetry

Colorimetry is the science to describe physically the human color perception. The wavelength range 380 nm - 780 nm is visible to humans and detected by three different photoreceptors. Many Reptiles see the range 350 nm - 800 nm and have an additional UV photoreceptor in their retina.

Spectrum in the visible wavelength range

Whereas a spectrometer measures the intensity in every tiny wavelength interval resulting in thousands of individual intensities, the human eye only measures three intensities detected by the three cones. The same is true for the reptile eye with usually three or four photoreceptors. Effectively the detailled spectrum displayed above reduces to a much compacter bar graph displayed below. The photoreceptor sensitivites from these L-Cone, M-Cone, S-Cone, and U-Cone are used, they are chosen as an average of measured reptile photoreceptor sensitivity curves. The bar graph also shows as reference the intensity seen by the three or four photoreceptors for average sunlight (id 1).

From these three numbers the colour coordinate and the correlated colour temperature for humans are calculated using the CIE standard method. I adapted this concept to a "3 cone reptile (M,S,U)" and a "4 cone reptile (L,M,S,U)". I am sure, that this adaption to other colour spaces makes sense mathematically and this is also done in scientific research regarding colour vision of animals, however I have not seen calculation of colour temperatures for other animals in the scientific literature. Even if it is hypothetical, at least this shows, how arbitrary the colour temperature is, and that the colour temperature calculated for humans does not apply to reptiles. The colour spaces also show the colour coordinates of different phases of daylight ((ids 1, 338451, 511513 ), indicated by crosses, coloured in the appriximate colour perceived by a human.

Human (CIE) 3 cone reptile 4 cone reptile
Cone Excitation
Colour Coordinate ( 0.39 ; 0.38 ) ( 0.43 ; 0.45 ) ( 0.43 ; 0.24 ; 0.25 )
CCT 3900 Kelvin 4700 Kelvin 3500 Kelvin
distance 0.11 0.089
colour space 3-D-graph not implemented yet

Vitamin D3 Analysis

Vitamin D3 is produced by UVB radiation around 300 nm. 7DHC/ProD3 present in the skin is converted to PreD3 when absorbing an UV photon. PreD3 can be converted back to ProD3, to Lumisterol, or to Tachysterol when absorbing another UV photon or can be converted to Vitamin D3 in a warm environment.

This process prevents any overdose of vitamin D3 from UV radiation with a spectrum similar to sunlight. As a comparison the solar spectra at 20°(id:14) and at 85°(id:21) solar angle are shown.

Spectrum in the vitamin D3 active wavelength range

The ratio of the two solarmeters 6.2 (UVB) and 6.5 (UV index) readings has proven a useful and very simply number to acess the spectral shape in the vitamin-d3-active region.

Effective Irradiances

Effective irradiances are calculated for all ranges, actionspectra and radiometers currently present in this database.

The calculation method is a numerical implementation (Simpson's rule) of the formula

To learn more about calculating effective irradiances and radiometers I recommend this excellent report on UVB meters: Characterizing the Performance of Integral Measuring UV-Meters (pdf).

The numbers in the following tables can also be used to estimate certain (effective) irradiances from radiomer readings. Example: If the database lists

  • range: UVB (US) = 13.8 µW/cm²
  • radiometer: Solarmeter 6.2 = 19.6 µW/cm²
then any Solarmeter 6.2 reading multiplied with 0.7 (0.7=13.8/19.6) is an estimate of UVB irradiance for this specific lamp. If you do so, always make sure, that the calculated (effective) irradiance is valid. The calculated value is not valid, if the lamp's spectrum is not measured in the relevant range.

Ranges
total ( 0 nm - 0 nm) 3630 µW/cm² = 36.3 W/m²
UVC ( 0 nm - 280 nm) -12 µW/cm² = -0.12 W/m²
non-terrestrial ( 0 nm - 290 nm) -12 µW/cm² = -0.12 W/m²
total2 ( 250 nm - 880 nm) 3650 µW/cm² = 36.5 W/m²
UVB (EU) ( 280 nm - 315 nm) 11.4 µW/cm² = 0.114 W/m²
UVB (US) ( 280 nm - 320 nm) 12.2 µW/cm² = 0.122 W/m²
UVA+B ( 280 nm - 380 nm) 113 µW/cm² = 1.13 W/m²
Solar UVB ( 290 nm - 315 nm) 11.4 µW/cm² = 0.114 W/m²
UVA D3 regulating ( 315 nm - 335 nm) 12.1 µW/cm² = 0.121 W/m²
UVA (EU) ( 315 nm - 380 nm) 102 µW/cm² = 1.02 W/m²
UVA2 (medical definition) ( 320 nm - 340 nm) 14.7 µW/cm² = 0.147 W/m²
UVA (US) ( 320 nm - 380 nm) 101 µW/cm² = 1.01 W/m²
UVA1 (variant) ( 335 nm - 380 nm) 89.4 µW/cm² = 0.894 W/m²
UVA1 (medical) ( 340 nm - 400 nm) 97.9 µW/cm² = 0.979 W/m²
vis. UVA ( 350 nm - 380 nm) 73.9 µW/cm² = 0.739 W/m²
VIS Rep3 ( 350 nm - 600 nm) 2350 µW/cm² = 23.5 W/m²
VIS Rep4 ( 350 nm - 700 nm) 3430 µW/cm² = 34.3 W/m²
purple ( 380 nm - 420 nm) 118 µW/cm² = 1.18 W/m²
VIS ( 380 nm - 780 nm) 3470 µW/cm² = 34.7 W/m²
PAR ( 400 nm - 700 nm) 3350 µW/cm² = 33.5 W/m²
blue ( 420 nm - 490 nm) 710 µW/cm² = 7.1 W/m²
green ( 490 nm - 575 nm) 1120 µW/cm² = 11.2 W/m²
yellow ( 575 nm - 585 nm) 129 µW/cm² = 1.29 W/m²
orange ( 585 nm - 650 nm) 1160 µW/cm² = 11.6 W/m²
red ( 650 nm - 780 nm) 232 µW/cm² = 2.32 W/m²
IRA ( 700 nm - 1400 nm) 180 µW/cm² = 1.8 W/m²
IRB ( 1400 nm - 3000 nm) 0 µW/cm² = 0 W/m²
Actionspectra
Erythema 0.252 UV-Index
Pyrimidine dimerization of DNA 5.06 µW/cm²
Photoceratitis 0.553 µW/cm²
Photoconjunctivitis 0.00201 µW/cm²
DNA Damage 0.00159
Vitamin D3 1.51 µW/cm²
Photosynthesis 2160 µW/cm²
Luminosity 12400 lx
Human L-Cone 1890 µW/cm²
Human M-Cone 1440 µW/cm²
Human S-Cone 559 µW/cm²
CIE X 1750 µW/cm²
CIE Y 1720 µW/cm²
CIE Z 1040 µW/cm²
PAR 15900000 mol photons
Extinction preD3 12.1 e-3*m²/mol
Extinction Tachysterol 39.7 e-3*m²/mol
Exctincition PreD3 5540 m²/mol
Extinction Lumisterol 0.338 m²/mol
Exctincition Tachysterol 57700 m²/mol
Extinction 7DHC -0.223 m²/mol
L-Cone 1640 µW/cm²
M-Cone 922 µW/cm²
S-Cone 966 µW/cm²
U-Cone 270 µW/cm²
UVR - ICNIRP 2004 0.0528 Rel Biol Eff
Melatonin Supression 774 µW/cm²
Blue Light Hazard 629 µW/cm² (50.9 µW/cm² per 1000 lx)
CIE 174:2006 PreVit D3 1.76 µW/cm²
Lumen Reptil 9720 "pseudo-lx"
Vitamin D3 Degradation 2.31 µW/cm²
Actinic UV 0.0636 µW/cm² (0.0515 mW/klm)
Exctincition Lumisterol 1180 m²/mol
Exctincition 7DHC -206 m²/mol
Exctincition Toxisterols 989 m²/mol
Broadbandmeters
Solarmeter 6.2 (UVB, pre 2010) 13.5 µW/cm²
Solarmeter 6.5 (UV-Index, pre 2010) 0.428
Leybold UVB 10.7 µW/cm²
Leybold UVA 74.7 µW/cm²
Leybold UVC 1.17E-6 µW/cm²
DeltaOhm UVB 21 µW/cm²
DeltaOhm UVC 2.36 µW/cm²
Vernier UVB 3.57 µW/cm²
Vernier UVA 48.1 µW/cm²
Gröbel UVA 88.9 µW/cm²
Gröbel UVB 5.55 µW/cm²
Gröbel UVC -0.00394 µW/cm²
Solarmeter 6.4 (D3) 1.34 IU/min
UVX-31 26.4 µW/cm²
IL UVB 0.00578 µW/cm²
IL UVA 91.6 µW/cm²
Solarmeter 6.5 (UVI, post 2010) 0.43 UV-Index
Solarmeter 6.2 (UVB, post 2010) 8.3 µW/cm² (Solarmeter Ratio = 19.3)
Solarmeter AlGaN 6.5 UVI sensor 7.79 UV Index
GenUV 7.1 UV-Index 0.409 UV-Index
Solarmeter 10.0 (Global Power) 39.3 W/m²
Solarmeter 4.0 (UVA) 1.35 mW/cm²
LS122 0.035 W/m²
ISM400 28.6 W/m²