Reptile Lamp Database

Spectrum 625: SW38 Edit
Delete

Full Spectrum

CCT:1019 4276K
CRI DC:1017 4,44E-3
CRI R01:1002 80,8 (4276K)
CRI R02:1003 91,3 (4276K)
CRI R03:1004 96,0 (4276K)
CRI R04:1005 78,9 (4276K)
CRI R05:1006 81,3 (4276K)
CRI R06:1007 89,4 (4276K)
CRI R07:1008 83,9 (4276K)
CRI R08:1009 62,0 (4276K)
CRI R09:1010 4,6 (4276K)
CRI R10:1011 79,4 (4276K)
CRI R11:1012 77,6 (4276K)
CRI R12:1013 61,8 (4276K)
CRI R13:1014 83,7 (4276K)
CRI R14:1015 98,2 (4276K)
CRI R15:1016 73,1 (4276K)
CRI Ra:1001 83,0 (4276K)
DC<5.4E-3:1018 true
X:1022 4,82
Y:1023 4,94
Z:1024 3,22
x:1026 0,3714
y:1027 0,3803
z:1028 0,2482

Measurement

Brand Terrario Reptile
Czech/Polish
Lamp Product LED UVB 10.0 3W
Lamp ID SW38 (08/2022)
donated by Petr Vejřík , see review in https://www.rostlinna-akvaria.cz/zarovky/zarovka-terrario-reptile-s-led-uvb-10-0-3w
Spectrometer USB2000+
Ballast - no ballast or default/unknown ballast -
Reflector
Distance 5 cm
Age 100 hours
Originator (measurement) Sarina Wunderlich
Database entry created: Sarina Wunderlich 30/Oct/2022 ; updated: Sarina Wunderlich 6/Nov/2022

Colorimetry

Colorimetry is the science to describe physically the human color perception. The wavelength range 380 nm - 780 nm is visible to humans and detected by three different photoreceptors. Many Reptiles see the range 350 nm - 800 nm and have an additional UV photoreceptor in their retina.

Spectrum in the visible wavelength range

Whereas a spectrometer measures the intensity in every tiny wavelength interval resulting in thousands of individual intensities, the human eye only measures three intensities detected by the three cones. The same is true for the reptile eye with usually three or four photoreceptors. Effectively the detailled spectrum displayed above reduces to a much compacter bar graph displayed below. The photoreceptor sensitivites from these L-Cone, M-Cone, S-Cone, and U-Cone are used, they are chosen as an average of measured reptile photoreceptor sensitivity curves. The bar graph also shows as reference the intensity seen by the three or four photoreceptors for average sunlight (id 1).

From these three numbers the colour coordinate and the correlated colour temperature for humans are calculated using the CIE standard method. I adapted this concept to a "3 cone reptile (M,S,U)" and a "4 cone reptile (L,M,S,U)". I am sure, that this adaption to other colour spaces makes sense mathematically and this is also done in scientific research regarding colour vision of animals, however I have not seen calculation of colour temperatures for other animals in the scientific literature. Even if it is hypothetical, at least this shows, how arbitrary the colour temperature is, and that the colour temperature calculated for humans does not apply to reptiles. The colour spaces also show the colour coordinates of different phases of daylight ((ids 1, 338451, 511513 ), indicated by crosses, coloured in the appriximate colour perceived by a human.

Human (CIE) 3 cone reptile 4 cone reptile
Cone Excitation
Colour Coordinate ( 0.37 ; 0.38 ) ( 0.49 ; 0.34 ) ( 0.39 ; 0.3 ; 0.21 )
CCT 4300 Kelvin 3800 Kelvin 3800 Kelvin
distance 0.013 0.0089
colour space 3-D-graph not implemented yet

Vitamin D3 Analysis

Vitamin D3 is produced by UVB radiation around 300 nm. 7DHC/ProD3 present in the skin is converted to PreD3 when absorbing an UV photon. PreD3 can be converted back to ProD3, to Lumisterol, or to Tachysterol when absorbing another UV photon or can be converted to Vitamin D3 in a warm environment.

This process prevents any overdose of vitamin D3 from UV radiation with a spectrum similar to sunlight. As a comparison the solar spectra at 20°(id:14) and at 85°(id:21) solar angle are shown.

Spectrum in the vitamin D3 active wavelength range

The ratio of the two solarmeters 6.2 (UVB) and 6.5 (UV index) readings has proven a useful and very simply number to acess the spectral shape in the vitamin-d3-active region.

Effective Irradiances

Effective irradiances are calculated for all ranges, actionspectra and radiometers currently present in this database.

The calculation method is a numerical implementation (Simpson's rule) of the formula

To learn more about calculating effective irradiances and radiometers I recommend this excellent report on UVB meters: Characterizing the Performance of Integral Measuring UV-Meters (pdf).

The numbers in the following tables can also be used to estimate certain (effective) irradiances from radiomer readings. Example: If the database lists

  • range: UVB (US) = 13.8 µW/cm²
  • radiometer: Solarmeter 6.2 = 19.6 µW/cm²
then any Solarmeter 6.2 reading multiplied with 0.7 (0.7=13.8/19.6) is an estimate of UVB irradiance for this specific lamp. If you do so, always make sure, that the calculated (effective) irradiance is valid. The calculated value is not valid, if the lamp's spectrum is not measured in the relevant range.

Ranges
total ( 0 nm - 0 nm) 1350 µW/cm² = 13.5 W/m²
UVC ( 0 nm - 280 nm) 68.4 µW/cm² = 0.684 W/m²
non-terrestrial ( 0 nm - 290 nm) 144 µW/cm² = 1.44 W/m²
total2 ( 250 nm - 880 nm) 1340 µW/cm² = 13.4 W/m²
UVB (EU) ( 280 nm - 315 nm) 98.2 µW/cm² = 0.982 W/m²
UVB (US) ( 280 nm - 320 nm) 98.6 µW/cm² = 0.986 W/m²
UVA+B ( 280 nm - 380 nm) 105 µW/cm² = 1.05 W/m²
Solar UVB ( 290 nm - 315 nm) 22.8 µW/cm² = 0.228 W/m²
UVA D3 regulating ( 315 nm - 335 nm) 1.01 µW/cm² = 0.0101 W/m²
UVA (EU) ( 315 nm - 380 nm) 6.41 µW/cm² = 0.0641 W/m²
UVA2 (medical definition) ( 320 nm - 340 nm) 0.809 µW/cm² = 0.00809 W/m²
UVA (US) ( 320 nm - 380 nm) 6.06 µW/cm² = 0.0606 W/m²
UVA1 (variant) ( 335 nm - 380 nm) 5.39 µW/cm² = 0.0539 W/m²
UVA1 (medical) ( 340 nm - 400 nm) 57 µW/cm² = 0.57 W/m²
vis. UVA ( 350 nm - 380 nm) 4.93 µW/cm² = 0.0493 W/m²
VIS Rep3 ( 350 nm - 600 nm) 842 µW/cm² = 8.42 W/m²
VIS Rep4 ( 350 nm - 700 nm) 1160 µW/cm² = 11.6 W/m²
purple ( 380 nm - 420 nm) 81 µW/cm² = 0.81 W/m²
VIS ( 380 nm - 780 nm) 1170 µW/cm² = 11.7 W/m²
PAR ( 400 nm - 700 nm) 1100 µW/cm² = 11 W/m²
blue ( 420 nm - 490 nm) 220 µW/cm² = 2.2 W/m²
green ( 490 nm - 575 nm) 384 µW/cm² = 3.84 W/m²
yellow ( 575 nm - 585 nm) 61 µW/cm² = 0.61 W/m²
orange ( 585 nm - 650 nm) 325 µW/cm² = 3.25 W/m²
red ( 650 nm - 780 nm) 99.3 µW/cm² = 0.993 W/m²
IRA ( 700 nm - 1400 nm) 22.8 µW/cm² = 0.228 W/m²
IRB ( 1400 nm - 3000 nm) 0 µW/cm² = 0 W/m²
Actionspectra
Erythema 64.6 UV-Index
Pyrimidine dimerization of DNA 21.3 µW/cm²
Photoceratitis 86.7 µW/cm²
Photoconjunctivitis 63.6 µW/cm²
DNA Damage 94.1
Vitamin D3 92.6 µW/cm²
Photosynthesis 713 µW/cm²
Luminosity 3820 lx
Human L-Cone 581 µW/cm²
Human M-Cone 457 µW/cm²
Human S-Cone 176 µW/cm²
CIE X 520 µW/cm²
CIE Y 533 µW/cm²
CIE Z 348 µW/cm²
PAR 5190000 mol photons
Extinction preD3 1020 e-3*m²/mol
Extinction Tachysterol 3160 e-3*m²/mol
Exctincition PreD3 898000 m²/mol
Extinction Lumisterol 1060 m²/mol
Exctincition Tachysterol 3990000 m²/mol
Extinction 7DHC 1370 m²/mol
L-Cone 505 µW/cm²
M-Cone 387 µW/cm²
S-Cone 268 µW/cm²
U-Cone 138 µW/cm²
UVR - ICNIRP 2004 130 Rel Biol Eff
Melatonin Supression 280 µW/cm²
Blue Light Hazard 188 µW/cm² (49.3 µW/cm² per 1000 lx)
CIE 174:2006 PreVit D3 90.6 µW/cm²
Lumen Reptil 3230 "pseudo-lx"
Vitamin D3 Degradation 90 µW/cm²
Actinic UV 129 µW/cm² (338 mW/klm)
Exctincition Lumisterol 1200000 m²/mol
Exctincition 7DHC 1500000 m²/mol
Exctincition Toxisterols 144000 m²/mol
Broadbandmeters
Solarmeter 6.2 (UVB, pre 2010) 235 µW/cm²
Solarmeter 6.5 (UV-Index, pre 2010) 44
Leybold UVB 32.3 µW/cm²
Leybold UVA 7.86 µW/cm²
Leybold UVC 31.7 µW/cm²
DeltaOhm UVB 60 µW/cm²
DeltaOhm UVC 71.1 µW/cm²
Vernier UVB 53 µW/cm²
Vernier UVA 2.98 µW/cm²
Gröbel UVA 4.75 µW/cm²
Gröbel UVB 112 µW/cm²
Gröbel UVC 46 µW/cm²
Solarmeter 6.4 (D3) 137 IU/min
UVX-31 58.5 µW/cm²
IL UVB 0.0998 µW/cm²
IL UVA 6.87 µW/cm²
Solarmeter 6.5 (UVI, post 2010) 23 UV-Index
Solarmeter 6.2 (UVB, post 2010) 70.8 µW/cm² (Solarmeter Ratio = 3.08)
Solarmeter AlGaN 6.5 UVI sensor 104 UV Index
GenUV 7.1 UV-Index 7.13 UV-Index
Solarmeter 10.0 (Global Power) 13 W/m²
Solarmeter 4.0 (UVA) 0.422 mW/cm²
LS122 0.00048 W/m²
ISM400 8.93 W/m²