Reptile Lamp Database

Spectrum 624: SW39 Edit
Delete

Full Spectrum

CCT:1019 4254K
CRI DC:1017 5,58E-3
CRI R01:1002 79,4 (4254K)
CRI R02:1003 89,3 (4254K)
CRI R03:1004 96,4 (4254K)
CRI R04:1005 79,2 (4254K)
CRI R05:1006 79,8 (4254K)
CRI R06:1007 86,6 (4254K)
CRI R07:1008 85,2 (4254K)
CRI R08:1009 61,4 (4254K)
CRI R09:1010 -0,6 (4254K)
CRI R10:1011 75,1 (4254K)
CRI R11:1012 77,8 (4254K)
CRI R12:1013 60,3 (4254K)
CRI R13:1014 82,0 (4254K)
CRI R14:1015 98,2 (4254K)
CRI R15:1016 71,4 (4254K)
CRI Ra:1001 82,2 (4254K)
DC<5.4E-3:1018 false
X:1022 7,79
Y:1023 8,02
Z:1024 5,08
x:1026 0,3730
y:1027 0,3839
z:1028 0,2431

Measurement

Brand Terrario Reptile
Czech/Polish
Lamp Product LED UVB 10.0 3W
Lamp ID SW39 (08/2022)
donated by Petr Vejřík , see review in https://www.rostlinna-akvaria.cz/zarovky/zarovka-terrario-reptile-s-led-uvb-10-0-3w
Spectrometer USB2000+
Ballast - no ballast or default/unknown ballast -
Reflector
Distance 5 cm
Age 100 hours
Originator (measurement) Sarina Wunderlich
Database entry created: Sarina Wunderlich 30/Oct/2022 ; updated: Sarina Wunderlich 30/Oct/2022

Colorimetry

Colorimetry is the science to describe physically the human color perception. The wavelength range 380 nm - 780 nm is visible to humans and detected by three different photoreceptors. Many Reptiles see the range 350 nm - 800 nm and have an additional UV photoreceptor in their retina.

Spectrum in the visible wavelength range

Whereas a spectrometer measures the intensity in every tiny wavelength interval resulting in thousands of individual intensities, the human eye only measures three intensities detected by the three cones. The same is true for the reptile eye with usually three or four photoreceptors. Effectively the detailled spectrum displayed above reduces to a much compacter bar graph displayed below. The photoreceptor sensitivites from these L-Cone, M-Cone, S-Cone, and U-Cone are used, they are chosen as an average of measured reptile photoreceptor sensitivity curves. The bar graph also shows as reference the intensity seen by the three or four photoreceptors for average sunlight (id 1).

From these three numbers the colour coordinate and the correlated colour temperature for humans are calculated using the CIE standard method. I adapted this concept to a "3 cone reptile (M,S,U)" and a "4 cone reptile (L,M,S,U)". I am sure, that this adaption to other colour spaces makes sense mathematically and this is also done in scientific research regarding colour vision of animals, however I have not seen calculation of colour temperatures for other animals in the scientific literature. Even if it is hypothetical, at least this shows, how arbitrary the colour temperature is, and that the colour temperature calculated for humans does not apply to reptiles. The colour spaces also show the colour coordinates of different phases of daylight ((ids 1, 338451, 511513 ), indicated by crosses, coloured in the appriximate colour perceived by a human.

Human (CIE) 3 cone reptile 4 cone reptile
Cone Excitation
Colour Coordinate ( 0.37 ; 0.38 ) ( 0.5 ; 0.36 ) ( 0.4 ; 0.3 ; 0.21 )
CCT 4300 Kelvin 3700 Kelvin 3700 Kelvin
distance 0.034 0.02
colour space 3-D-graph not implemented yet

Vitamin D3 Analysis

Vitamin D3 is produced by UVB radiation around 300 nm. 7DHC/ProD3 present in the skin is converted to PreD3 when absorbing an UV photon. PreD3 can be converted back to ProD3, to Lumisterol, or to Tachysterol when absorbing another UV photon or can be converted to Vitamin D3 in a warm environment.

This process prevents any overdose of vitamin D3 from UV radiation with a spectrum similar to sunlight. As a comparison the solar spectra at 20°(id:14) and at 85°(id:21) solar angle are shown.

Spectrum in the vitamin D3 active wavelength range

The ratio of the two solarmeters 6.2 (UVB) and 6.5 (UV index) readings has proven a useful and very simply number to acess the spectral shape in the vitamin-d3-active region.

Effective Irradiances

Effective irradiances are calculated for all ranges, actionspectra and radiometers currently present in this database.

The calculation method is a numerical implementation (Simpson's rule) of the formula

To learn more about calculating effective irradiances and radiometers I recommend this excellent report on UVB meters: Characterizing the Performance of Integral Measuring UV-Meters (pdf).

The numbers in the following tables can also be used to estimate certain (effective) irradiances from radiomer readings. Example: If the database lists

  • range: UVB (US) = 13.8 µW/cm²
  • radiometer: Solarmeter 6.2 = 19.6 µW/cm²
then any Solarmeter 6.2 reading multiplied with 0.7 (0.7=13.8/19.6) is an estimate of UVB irradiance for this specific lamp. If you do so, always make sure, that the calculated (effective) irradiance is valid. The calculated value is not valid, if the lamp's spectrum is not measured in the relevant range.

Ranges
total ( 0 nm - 0 nm) 2030 µW/cm² = 20.3 W/m²
UVC ( 0 nm - 280 nm) 75.6 µW/cm² = 0.756 W/m²
non-terrestrial ( 0 nm - 290 nm) 151 µW/cm² = 1.51 W/m²
total2 ( 250 nm - 880 nm) 2030 µW/cm² = 20.3 W/m²
UVB (EU) ( 280 nm - 315 nm) 95.5 µW/cm² = 0.955 W/m²
UVB (US) ( 280 nm - 320 nm) 95.9 µW/cm² = 0.959 W/m²
UVA+B ( 280 nm - 380 nm) 101 µW/cm² = 1.01 W/m²
Solar UVB ( 290 nm - 315 nm) 20.5 µW/cm² = 0.205 W/m²
UVA D3 regulating ( 315 nm - 335 nm) 1.2 µW/cm² = 0.012 W/m²
UVA (EU) ( 315 nm - 380 nm) 5.98 µW/cm² = 0.0598 W/m²
UVA2 (medical definition) ( 320 nm - 340 nm) 0.986 µW/cm² = 0.00986 W/m²
UVA (US) ( 320 nm - 380 nm) 5.56 µW/cm² = 0.0556 W/m²
UVA1 (variant) ( 335 nm - 380 nm) 4.78 µW/cm² = 0.0478 W/m²
UVA1 (medical) ( 340 nm - 400 nm) 66 µW/cm² = 0.66 W/m²
vis. UVA ( 350 nm - 380 nm) 4.18 µW/cm² = 0.0418 W/m²
VIS Rep3 ( 350 nm - 600 nm) 1330 µW/cm² = 13.3 W/m²
VIS Rep4 ( 350 nm - 700 nm) 1830 µW/cm² = 18.3 W/m²
purple ( 380 nm - 420 nm) 107 µW/cm² = 1.07 W/m²
VIS ( 380 nm - 780 nm) 1850 µW/cm² = 18.5 W/m²
PAR ( 400 nm - 700 nm) 1760 µW/cm² = 17.6 W/m²
blue ( 420 nm - 490 nm) 341 µW/cm² = 3.41 W/m²
green ( 490 nm - 575 nm) 629 µW/cm² = 6.29 W/m²
yellow ( 575 nm - 585 nm) 99 µW/cm² = 0.99 W/m²
orange ( 585 nm - 650 nm) 522 µW/cm² = 5.22 W/m²
red ( 650 nm - 780 nm) 154 µW/cm² = 1.54 W/m²
IRA ( 700 nm - 1400 nm) 36 µW/cm² = 0.36 W/m²
IRB ( 1400 nm - 3000 nm) 0 µW/cm² = 0 W/m²
Actionspectra
Erythema 66.1 UV-Index
Pyrimidine dimerization of DNA 20.3 µW/cm²
Photoceratitis 86.3 µW/cm²
Photoconjunctivitis 66.9 µW/cm²
DNA Damage 99.1
Vitamin D3 92.7 µW/cm²
Photosynthesis 1140 µW/cm²
Luminosity 6200 lx
Human L-Cone 942 µW/cm²
Human M-Cone 742 µW/cm²
Human S-Cone 279 µW/cm²
CIE X 841 µW/cm²
CIE Y 866 µW/cm²
CIE Z 548 µW/cm²
PAR 8310000 mol photons
Extinction preD3 1060 e-3*m²/mol
Extinction Tachysterol 3270 e-3*m²/mol
Exctincition PreD3 938000 m²/mol
Extinction Lumisterol 1110 m²/mol
Exctincition Tachysterol 4140000 m²/mol
Extinction 7DHC 1430 m²/mol
L-Cone 819 µW/cm²
M-Cone 609 µW/cm²
S-Cone 433 µW/cm²
U-Cone 171 µW/cm²
UVR - ICNIRP 2004 135 Rel Biol Eff
Melatonin Supression 437 µW/cm²
Blue Light Hazard 299 µW/cm² (48.2 µW/cm² per 1000 lx)
CIE 174:2006 PreVit D3 90.4 µW/cm²
Lumen Reptil 5100 "pseudo-lx"
Vitamin D3 Degradation 95.4 µW/cm²
Actinic UV 135 µW/cm² (217 mW/klm)
Exctincition Lumisterol 1260000 m²/mol
Exctincition 7DHC 1560000 m²/mol
Exctincition Toxisterols 146000 m²/mol
Broadbandmeters
Solarmeter 6.2 (UVB, pre 2010) 242 µW/cm²
Solarmeter 6.5 (UV-Index, pre 2010) 45.7
Leybold UVB 30.2 µW/cm²
Leybold UVA 8.39 µW/cm²
Leybold UVC 32.6 µW/cm²
DeltaOhm UVB 58.6 µW/cm²
DeltaOhm UVC 73.4 µW/cm²
Vernier UVB 51.9 µW/cm²
Vernier UVA 3.15 µW/cm²
Gröbel UVA 4.71 µW/cm²
Gröbel UVB 113 µW/cm²
Gröbel UVC 48.4 µW/cm²
Solarmeter 6.4 (D3) 143 IU/min
UVX-31 58.3 µW/cm²
IL UVB 0.102 µW/cm²
IL UVA 6.66 µW/cm²
Solarmeter 6.5 (UVI, post 2010) 23.4 UV-Index
Solarmeter 6.2 (UVB, post 2010) 72.3 µW/cm² (Solarmeter Ratio = 3.09)
Solarmeter AlGaN 6.5 UVI sensor 107 UV Index
GenUV 7.1 UV-Index 7.31 UV-Index
Solarmeter 10.0 (Global Power) 20.5 W/m²
Solarmeter 4.0 (UVA) 0.484 mW/cm²
LS122 0.00462 W/m²
ISM400 14.3 W/m²