Reptile Lamp Database

Spectrum 618: SW27 Edit
Delete

Full Spectrum

Seite mit Beschriftung

CCT:1019 7140K
CRI DC:1017 6,27E-3
CRI R01:1002 94,9 (7140K)
CRI R02:1003 93,2 (7140K)
CRI R03:1004 76,6 (7140K)
CRI R04:1005 94,2 (7140K)
CRI R05:1006 97,1 (7140K)
CRI R06:1007 98,0 (7140K)
CRI R07:1008 94,8 (7140K)
CRI R08:1009 87,1 (7140K)
CRI R09:1010 63,6 (7140K)
CRI R10:1011 77,3 (7140K)
CRI R11:1012 94,3 (7140K)
CRI R12:1013 92,6 (7140K)
CRI R13:1014 90,3 (7140K)
CRI R14:1015 84,2 (7140K)
CRI R15:1016 96,8 (7140K)
CRI Ra:1001 92,0 (7140K)
DC<5.4E-3:1018 false
X:1022 18,98
Y:1023 20,77
Z:1024 23,26
x:1026 0,3012
y:1027 0,3296
z:1028 0,3691

Measurement

Brand Arcadia
UK company https://www.arcadiareptile.com/
Lamp Product D3 Forest Lamp (6% UVB) T5 24W
Lamp ID SW27 (05/2022)
donated by Arcadia
Spectrometer USB2000+
Ballast - no ballast or default/unknown ballast -
Reflector
Distance 5 cm
Age 100 hours
Originator (measurement) Sarina Wunderlich
Database entry created: Sarina Wunderlich 18/Sep/2022 ; updated: Sarina Wunderlich 18/Sep/2022

Colorimetry

Colorimetry is the science to describe physically the human color perception. The wavelength range 380 nm - 780 nm is visible to humans and detected by three different photoreceptors. Many Reptiles see the range 350 nm - 800 nm and have an additional UV photoreceptor in their retina.

Spectrum in the visible wavelength range

Whereas a spectrometer measures the intensity in every tiny wavelength interval resulting in thousands of individual intensities, the human eye only measures three intensities detected by the three cones. The same is true for the reptile eye with usually three or four photoreceptors. Effectively the detailled spectrum displayed above reduces to a much compacter bar graph displayed below. The photoreceptor sensitivites from these L-Cone, M-Cone, S-Cone, and U-Cone are used, they are chosen as an average of measured reptile photoreceptor sensitivity curves. The bar graph also shows as reference the intensity seen by the three or four photoreceptors for average sunlight (id 1).

From these three numbers the colour coordinate and the correlated colour temperature for humans are calculated using the CIE standard method. I adapted this concept to a "3 cone reptile (M,S,U)" and a "4 cone reptile (L,M,S,U)". I am sure, that this adaption to other colour spaces makes sense mathematically and this is also done in scientific research regarding colour vision of animals, however I have not seen calculation of colour temperatures for other animals in the scientific literature. Even if it is hypothetical, at least this shows, how arbitrary the colour temperature is, and that the colour temperature calculated for humans does not apply to reptiles. The colour spaces also show the colour coordinates of different phases of daylight ((ids 1, 338451, 511513 ), indicated by crosses, coloured in the appriximate colour perceived by a human.

Human (CIE) 3 cone reptile 4 cone reptile
Cone Excitation
Colour Coordinate ( 0.3 ; 0.33 ) ( 0.47 ; 0.42 ) ( 0.27 ; 0.34 ; 0.3 )
CCT 7100 Kelvin 4100 Kelvin 5000 Kelvin
distance 0.088 0.09
colour space 3-D-graph not implemented yet

Vitamin D3 Analysis

Vitamin D3 is produced by UVB radiation around 300 nm. 7DHC/ProD3 present in the skin is converted to PreD3 when absorbing an UV photon. PreD3 can be converted back to ProD3, to Lumisterol, or to Tachysterol when absorbing another UV photon or can be converted to Vitamin D3 in a warm environment.

This process prevents any overdose of vitamin D3 from UV radiation with a spectrum similar to sunlight. As a comparison the solar spectra at 20°(id:14) and at 85°(id:21) solar angle are shown.

Spectrum in the vitamin D3 active wavelength range

The ratio of the two solarmeters 6.2 (UVB) and 6.5 (UV index) readings has proven a useful and very simply number to acess the spectral shape in the vitamin-d3-active region.

Effective Irradiances

Effective irradiances are calculated for all ranges, actionspectra and radiometers currently present in this database.

The calculation method is a numerical implementation (Simpson's rule) of the formula

To learn more about calculating effective irradiances and radiometers I recommend this excellent report on UVB meters: Characterizing the Performance of Integral Measuring UV-Meters (pdf).

The numbers in the following tables can also be used to estimate certain (effective) irradiances from radiomer readings. Example: If the database lists

  • range: UVB (US) = 13.8 µW/cm²
  • radiometer: Solarmeter 6.2 = 19.6 µW/cm²
then any Solarmeter 6.2 reading multiplied with 0.7 (0.7=13.8/19.6) is an estimate of UVB irradiance for this specific lamp. If you do so, always make sure, that the calculated (effective) irradiance is valid. The calculated value is not valid, if the lamp's spectrum is not measured in the relevant range.

Ranges
total ( 0 nm - 0 nm) 6820 µW/cm² = 68.2 W/m²
UVC ( 0 nm - 280 nm) 1.05 µW/cm² = 0.0105 W/m²
non-terrestrial ( 0 nm - 290 nm) 4.99 µW/cm² = 0.0499 W/m²
total2 ( 250 nm - 880 nm) 6830 µW/cm² = 68.3 W/m²
UVB (EU) ( 280 nm - 315 nm) 239 µW/cm² = 2.39 W/m²
UVB (US) ( 280 nm - 320 nm) 378 µW/cm² = 3.78 W/m²
UVA+B ( 280 nm - 380 nm) 1420 µW/cm² = 14.2 W/m²
Solar UVB ( 290 nm - 315 nm) 235 µW/cm² = 2.35 W/m²
UVA D3 regulating ( 315 nm - 335 nm) 567 µW/cm² = 5.67 W/m²
UVA (EU) ( 315 nm - 380 nm) 1180 µW/cm² = 11.8 W/m²
UVA2 (medical definition) ( 320 nm - 340 nm) 564 µW/cm² = 5.64 W/m²
UVA (US) ( 320 nm - 380 nm) 1040 µW/cm² = 10.4 W/m²
UVA1 (variant) ( 335 nm - 380 nm) 611 µW/cm² = 6.11 W/m²
UVA1 (medical) ( 340 nm - 400 nm) 494 µW/cm² = 4.94 W/m²
vis. UVA ( 350 nm - 380 nm) 241 µW/cm² = 2.41 W/m²
VIS Rep3 ( 350 nm - 600 nm) 4450 µW/cm² = 44.5 W/m²
VIS Rep4 ( 350 nm - 700 nm) 5530 µW/cm² = 55.3 W/m²
purple ( 380 nm - 420 nm) 243 µW/cm² = 2.43 W/m²
VIS ( 380 nm - 780 nm) 5390 µW/cm² = 53.9 W/m²
PAR ( 400 nm - 700 nm) 5270 µW/cm² = 52.7 W/m²
blue ( 420 nm - 490 nm) 1700 µW/cm² = 17 W/m²
green ( 490 nm - 575 nm) 1870 µW/cm² = 18.7 W/m²
yellow ( 575 nm - 585 nm) 194 µW/cm² = 1.94 W/m²
orange ( 585 nm - 650 nm) 1120 µW/cm² = 11.2 W/m²
red ( 650 nm - 780 nm) 263 µW/cm² = 2.63 W/m²
IRA ( 700 nm - 1400 nm) 118 µW/cm² = 1.18 W/m²
IRB ( 1400 nm - 3000 nm) 0 µW/cm² = 0 W/m²
Actionspectra
Erythema 16.3 UV-Index
Pyrimidine dimerization of DNA 145 µW/cm²
Photoceratitis 26.1 µW/cm²
Photoconjunctivitis 1.69 µW/cm²
DNA Damage 3.96
Vitamin D3 65.2 µW/cm²
Photosynthesis 3620 µW/cm²
Luminosity 16200 lx
Human L-Cone 2380 µW/cm²
Human M-Cone 2090 µW/cm²
Human S-Cone 1320 µW/cm²
CIE X 2050 µW/cm²
CIE Y 2240 µW/cm²
CIE Z 2510 µW/cm²
PAR 24300000 mol photons
Extinction preD3 434 e-3*m²/mol
Extinction Tachysterol 1540 e-3*m²/mol
Exctincition PreD3 215000 m²/mol
Extinction Lumisterol 92.2 m²/mol
Exctincition Tachysterol 2170000 m²/mol
Extinction 7DHC 96.8 m²/mol
L-Cone 1920 µW/cm²
M-Cone 2380 µW/cm²
S-Cone 2130 µW/cm²
U-Cone 564 µW/cm²
UVR - ICNIRP 2004 15.3 Rel Biol Eff
Melatonin Supression 1980 µW/cm²
Blue Light Hazard 1460 µW/cm² (90.3 µW/cm² per 1000 lx)
CIE 174:2006 PreVit D3 71.3 µW/cm²
Lumen Reptil 16500 "pseudo-lx"
Vitamin D3 Degradation 75.4 µW/cm²
Actinic UV 15.2 µW/cm² (9.41 mW/klm)
Exctincition Lumisterol 124000 m²/mol
Exctincition 7DHC 119000 m²/mol
Exctincition Toxisterols 33900 m²/mol
Broadbandmeters
Solarmeter 6.2 (UVB, pre 2010) 450 µW/cm²
Solarmeter 6.5 (UV-Index, pre 2010) 19.3
Leybold UVB 322 µW/cm²
Leybold UVA 725 µW/cm²
Leybold UVC 0.206 µW/cm²
DeltaOhm UVB 737 µW/cm²
DeltaOhm UVC 92.7 µW/cm²
Vernier UVB 113 µW/cm²
Vernier UVA 895 µW/cm²
Gröbel UVA 985 µW/cm²
Gröbel UVB 166 µW/cm²
Gröbel UVC 0.476 µW/cm²
Solarmeter 6.4 (D3) 60.3 IU/min
UVX-31 791 µW/cm²
IL UVB 0.189 µW/cm²
IL UVA 812 µW/cm²
Solarmeter 6.5 (UVI, post 2010) 15.4 UV-Index
Solarmeter 6.2 (UVB, post 2010) 297 µW/cm² (Solarmeter Ratio = 19.3)
Solarmeter AlGaN 6.5 UVI sensor 204 UV Index
GenUV 7.1 UV-Index 11.4 UV-Index
Solarmeter 10.0 (Global Power) 59.9 W/m²
Solarmeter 4.0 (UVA) 10.5 mW/cm²
LS122 0.0058 W/m²
ISM400 36 W/m²