Reptile Lamp Database

Spectrum 605: RS-Z4-24W Edit
Delete

Full Spectrum

CCT:1019 12002K
CRI DC:1017 7.93E-3
CRI R01:1002 25.2 (12002K)
CRI R02:1003 30.7 (12002K)
CRI R03:1004 41.0 (12002K)
CRI R04:1005 36.6 (12002K)
CRI R05:1006 33.6 (12002K)
CRI R06:1007 32.9 (12002K)
CRI R07:1008 27.7 (12002K)
CRI R08:1009 17.2 (12002K)
CRI R09:1010 42.2 (12002K)
CRI R10:1011 19.1 (12002K)
CRI R11:1012 50.9 (12002K)
CRI R12:1013 60.8 (12002K)
CRI R13:1014 1.2 (12002K)
CRI R14:1015 61.3 (12002K)
CRI R15:1016 21.1 (12002K)
CRI Ra:1001 30.6 (12002K)
DC<5.4E-3:1018 false

Measurement

Brand Reptile Systems
French brand, originally for aqaristics https://www.aquariumsystems.fr/
Lamp Product Reptile Systems Zone 4 (15%) 24W
15% UVB
Lamp ID RS-Z4-24W (07/2022)
Reptile Systems Zone 4 (15%) - 24W
Spectrometer FLAME UV-Vis (E)
Ballast - no ballast or default/unknown ballast -
Reflector
Distance 30 cm
Age 100 hours
Originator (measurement) Thomas Griffiths
Database entry created: Thomas Griffiths (Tomaskas Ltd.) 23/Aug/2022 ; updated: Thomas Griffiths (Tomaskas Ltd.) 9/Jan/2023

Colorimetry

Colorimetry is the science to describe physically the human color perception. The wavelength range 380 nm - 780 nm is visible to humans and detected by three different photoreceptors. Many Reptiles see the range 350 nm - 800 nm and have an additional UV photoreceptor in their retina.

Spectrum in the visible wavelength range

Whereas a spectrometer measures the intensity in every tiny wavelength interval resulting in thousands of individual intensities, the human eye only measures three intensities detected by the three cones. The same is true for the reptile eye with usually three or four photoreceptors. Effectively the detailled spectrum displayed above reduces to a much compacter bar graph displayed below. The photoreceptor sensitivites from these L-Cone, M-Cone, S-Cone, and U-Cone are used, they are chosen as an average of measured reptile photoreceptor sensitivity curves. The bar graph also shows as reference the intensity seen by the three or four photoreceptors for average sunlight (id 1).

From these three numbers the colour coordinate and the correlated colour temperature for humans are calculated using the CIE standard method. I adapted this concept to a "3 cone reptile (M,S,U)" and a "4 cone reptile (L,M,S,U)". I am sure, that this adaption to other colour spaces makes sense mathematically and this is also done in scientific research regarding colour vision of animals, however I have not seen calculation of colour temperatures for other animals in the scientific literature. Even if it is hypothetical, at least this shows, how arbitrary the colour temperature is, and that the colour temperature calculated for humans does not apply to reptiles. The colour spaces also show the colour coordinates of different phases of daylight ((ids 1, 338451, 511513 ), indicated by crosses, coloured in the appriximate colour perceived by a human.

Human (CIE) 3 cone reptile 4 cone reptile
Cone Excitation
Colour Coordinate ( 0.27 ; 0.27 ) ( 0.23 ; 0.45 ) ( 0.18 ; 0.19 ; 0.37 )
CCT 12000 Kelvin 11000 Kelvin 11000 Kelvin
distance 0.13 0.1
colour space 3-D-graph not implemented yet

Vitamin D3 Analysis

Vitamin D3 is produced by UVB radiation around 300 nm. 7DHC/ProD3 present in the skin is converted to PreD3 when absorbing an UV photon. PreD3 can be converted back to ProD3, to Lumisterol, or to Tachysterol when absorbing another UV photon or can be converted to Vitamin D3 in a warm environment.

This process prevents any overdose of vitamin D3 from UV radiation with a spectrum similar to sunlight. As a comparison the solar spectra at 20°(id:14) and at 85°(id:21) solar angle are shown.

Spectrum in the vitamin D3 active wavelength range

The ratio of the two solarmeters 6.2 (UVB) and 6.5 (UV index) readings has proven a useful and very simply number to acess the spectral shape in the vitamin-d3-active region.

Effective Irradiances

Effective irradiances are calculated for all ranges, actionspectra and radiometers currently present in this database.

The calculation method is a numerical implementation (Simpson's rule) of the formula

To learn more about calculating effective irradiances and radiometers I recommend this excellent report on UVB meters: Characterizing the Performance of Integral Measuring UV-Meters (pdf).

The numbers in the following tables can also be used to estimate certain (effective) irradiances from radiomer readings. Example: If the database lists

  • range: UVB (US) = 13.8 µW/cm²
  • radiometer: Solarmeter 6.2 = 19.6 µW/cm²
then any Solarmeter 6.2 reading multiplied with 0.7 (0.7=13.8/19.6) is an estimate of UVB irradiance for this specific lamp. If you do so, always make sure, that the calculated (effective) irradiance is valid. The calculated value is not valid, if the lamp's spectrum is not measured in the relevant range.

Ranges
total ( 0 nm - 0 nm) 1420 µW/cm² = 14.2 W/m²
UVC ( 0 nm - 280 nm) 0 µW/cm² = 0 W/m²
non-terrestrial ( 0 nm - 290 nm) 0 µW/cm² = 0 W/m²
total2 ( 250 nm - 880 nm) 1420 µW/cm² = 14.2 W/m²
UVB (EU) ( 280 nm - 315 nm) 357 µW/cm² = 3.57 W/m²
UVB (US) ( 280 nm - 320 nm) 376 µW/cm² = 3.76 W/m²
UVA+B ( 280 nm - 380 nm) 554 µW/cm² = 5.54 W/m²
Solar UVB ( 290 nm - 315 nm) 357 µW/cm² = 3.57 W/m²
UVA D3 regulating ( 315 nm - 335 nm) 64.8 µW/cm² = 0.648 W/m²
UVA (EU) ( 315 nm - 380 nm) 197 µW/cm² = 1.97 W/m²
UVA2 (medical definition) ( 320 nm - 340 nm) 58.1 µW/cm² = 0.581 W/m²
UVA (US) ( 320 nm - 380 nm) 178 µW/cm² = 1.78 W/m²
UVA1 (variant) ( 335 nm - 380 nm) 132 µW/cm² = 1.32 W/m²
UVA1 (medical) ( 340 nm - 400 nm) 159 µW/cm² = 1.59 W/m²
vis. UVA ( 350 nm - 380 nm) 97.5 µW/cm² = 0.975 W/m²
VIS Rep3 ( 350 nm - 600 nm) 779 µW/cm² = 7.79 W/m²
VIS Rep4 ( 350 nm - 700 nm) 921 µW/cm² = 9.21 W/m²
purple ( 380 nm - 420 nm) 134 µW/cm² = 1.34 W/m²
VIS ( 380 nm - 780 nm) 853 µW/cm² = 8.53 W/m²
PAR ( 400 nm - 700 nm) 785 µW/cm² = 7.85 W/m²
blue ( 420 nm - 490 nm) 274 µW/cm² = 2.74 W/m²
green ( 490 nm - 575 nm) 210 µW/cm² = 2.1 W/m²
yellow ( 575 nm - 585 nm) 41.8 µW/cm² = 0.418 W/m²
orange ( 585 nm - 650 nm) 100 µW/cm² = 1 W/m²
red ( 650 nm - 780 nm) 93 µW/cm² = 0.93 W/m²
IRA ( 700 nm - 1400 nm) 42.8 µW/cm² = 0.428 W/m²
IRB ( 1400 nm - 3000 nm) 0 µW/cm² = 0 W/m²
Actionspectra
Erythema 9.41 UV-Index
Pyrimidine dimerization of DNA 137 µW/cm²
Photoceratitis 21.8 µW/cm²
Photoconjunctivitis 0.136 µW/cm²
DNA Damage 0.592
Vitamin D3 51.3 µW/cm²
Photosynthesis 568 µW/cm²
Luminosity 1900 lx
Human L-Cone 278 µW/cm²
Human M-Cone 249 µW/cm²
Human S-Cone 247 µW/cm²
CIE X 267 µW/cm²
CIE Y 263 µW/cm²
CIE Z 442 µW/cm²
PAR 3870000 mol photons
Extinction preD3 370 e-3*m²/mol
Extinction Tachysterol 1210 e-3*m²/mol
Exctincition PreD3 155000 m²/mol
Extinction Lumisterol 29.4 m²/mol
Exctincition Tachysterol 1550000 m²/mol
Extinction 7DHC 16.8 m²/mol
L-Cone 228 µW/cm²
M-Cone 233 µW/cm²
S-Cone 467 µW/cm²
U-Cone 329 µW/cm²
UVR - ICNIRP 2004 5.42 Rel Biol Eff
Melatonin Supression 310 µW/cm²
Blue Light Hazard 284 µW/cm² (150 µW/cm² per 1000 lx)
CIE 174:2006 PreVit D3 53 µW/cm²
Lumen Reptil 2630 "pseudo-lx"
Vitamin D3 Degradation 64.8 µW/cm²
Actinic UV 5.45 µW/cm² (28.6 mW/klm)
Exctincition Lumisterol 52200 m²/mol
Exctincition 7DHC 29100 m²/mol
Exctincition Toxisterols 21200 m²/mol
Broadbandmeters
Solarmeter 6.2 (UVB, pre 2010) 372 µW/cm²
Solarmeter 6.5 (UV-Index, pre 2010) 13
Leybold UVB 316 µW/cm²
Leybold UVA 123 µW/cm²
Leybold UVC 0.00919 µW/cm²
DeltaOhm UVB 378 µW/cm²
DeltaOhm UVC 59.1 µW/cm²
Vernier UVB 128 µW/cm²
Vernier UVA 259 µW/cm²
Gröbel UVA 240 µW/cm²
Gröbel UVB 165 µW/cm²
Gröbel UVC -0.135 µW/cm²
Solarmeter 6.4 (D3) 40.5 IU/min
UVX-31 419 µW/cm²
IL UVB 0.139 µW/cm²
IL UVA 178 µW/cm²
Solarmeter 6.5 (UVI, post 2010) 12.5 UV-Index
Solarmeter 6.2 (UVB, post 2010) 215 µW/cm² (Solarmeter Ratio = 17.2)
Solarmeter AlGaN 6.5 UVI sensor 253 UV Index
GenUV 7.1 UV-Index 12.3 UV-Index
Solarmeter 10.0 (Global Power) 10.4 W/m²
Solarmeter 4.0 (UVA) 2.91 mW/cm²
LS122 0.0151 W/m²
ISM400 5.67 W/m²