Reptile Lamp Database

Spectrum 604: SW31 Edit
Delete

Full Spectrum

unknown age of the lamp

CCT:1019 7926K
CRI DC:1017 1,04E-2
CRI R01:1002 56,1 (7926K)
CRI R02:1003 70,5 (7926K)
CRI R03:1004 71,5 (7926K)
CRI R04:1005 62,6 (7926K)
CRI R05:1006 59,0 (7926K)
CRI R06:1007 52,0 (7926K)
CRI R07:1008 66,1 (7926K)
CRI R08:1009 50,3 (7926K)
CRI R09:1010 -60,4 (7926K)
CRI R10:1011 21,2 (7926K)
CRI R11:1012 50,6 (7926K)
CRI R12:1013 46,8 (7926K)
CRI R13:1014 60,2 (7926K)
CRI R14:1015 83,6 (7926K)
CRI R15:1016 51,1 (7926K)
CRI Ra:1001 61,0 (7926K)
DC<5.4E-3:1018 false
X:1022 2,74
Y:1023 3,08
Z:1024 3,65
x:1026 0,2896
y:1027 0,3254
z:1028 0,3850

Measurement

Brand Sera
https://www.sera.de/ German company, founded 1970, original focus on fish food
Lamp Product reptil desert compact 20 W
Lamp ID SW31 (06/2017)
Spectrometer USB2000+
Ballast - no ballast or default/unknown ballast -
Reflector
Distance 10 cm
Age 500 hours
Originator (measurement) Sarina Wunderlich
Database entry created: Sarina Wunderlich 26/Jul/2022 ; updated: Sarina Wunderlich 26/Jul/2022

Colorimetry

Colorimetry is the science to describe physically the human color perception. The wavelength range 380 nm - 780 nm is visible to humans and detected by three different photoreceptors. Many Reptiles see the range 350 nm - 800 nm and have an additional UV photoreceptor in their retina.

Spectrum in the visible wavelength range

Whereas a spectrometer measures the intensity in every tiny wavelength interval resulting in thousands of individual intensities, the human eye only measures three intensities detected by the three cones. The same is true for the reptile eye with usually three or four photoreceptors. Effectively the detailled spectrum displayed above reduces to a much compacter bar graph displayed below. The photoreceptor sensitivites from these L-Cone, M-Cone, S-Cone, and U-Cone are used, they are chosen as an average of measured reptile photoreceptor sensitivity curves. The bar graph also shows as reference the intensity seen by the three or four photoreceptors for average sunlight (id 1).

From these three numbers the colour coordinate and the correlated colour temperature for humans are calculated using the CIE standard method. I adapted this concept to a "3 cone reptile (M,S,U)" and a "4 cone reptile (L,M,S,U)". I am sure, that this adaption to other colour spaces makes sense mathematically and this is also done in scientific research regarding colour vision of animals, however I have not seen calculation of colour temperatures for other animals in the scientific literature. Even if it is hypothetical, at least this shows, how arbitrary the colour temperature is, and that the colour temperature calculated for humans does not apply to reptiles. The colour spaces also show the colour coordinates of different phases of daylight ((ids 1, 338451, 511513 ), indicated by crosses, coloured in the appriximate colour perceived by a human.

Human (CIE) 3 cone reptile 4 cone reptile
Cone Excitation
Colour Coordinate ( 0.29 ; 0.33 ) ( 0.29 ; 0.44 ) ( 0.24 ; 0.22 ; 0.34 )
CCT 7900 Kelvin 7600 Kelvin 6600 Kelvin
distance 0.1 0.08
colour space 3-D-graph not implemented yet

Vitamin D3 Analysis

Vitamin D3 is produced by UVB radiation around 300 nm. 7DHC/ProD3 present in the skin is converted to PreD3 when absorbing an UV photon. PreD3 can be converted back to ProD3, to Lumisterol, or to Tachysterol when absorbing another UV photon or can be converted to Vitamin D3 in a warm environment.

This process prevents any overdose of vitamin D3 from UV radiation with a spectrum similar to sunlight. As a comparison the solar spectra at 20°(id:14) and at 85°(id:21) solar angle are shown.

Spectrum in the vitamin D3 active wavelength range

The ratio of the two solarmeters 6.2 (UVB) and 6.5 (UV index) readings has proven a useful and very simply number to acess the spectral shape in the vitamin-d3-active region.

Effective Irradiances

Effective irradiances are calculated for all ranges, actionspectra and radiometers currently present in this database.

The calculation method is a numerical implementation (Simpson's rule) of the formula

To learn more about calculating effective irradiances and radiometers I recommend this excellent report on UVB meters: Characterizing the Performance of Integral Measuring UV-Meters (pdf).

The numbers in the following tables can also be used to estimate certain (effective) irradiances from radiomer readings. Example: If the database lists

  • range: UVB (US) = 13.8 µW/cm²
  • radiometer: Solarmeter 6.2 = 19.6 µW/cm²
then any Solarmeter 6.2 reading multiplied with 0.7 (0.7=13.8/19.6) is an estimate of UVB irradiance for this specific lamp. If you do so, always make sure, that the calculated (effective) irradiance is valid. The calculated value is not valid, if the lamp's spectrum is not measured in the relevant range.

Ranges
total ( 0 nm - 0 nm) 1290 µW/cm² = 12.9 W/m²
UVC ( 0 nm - 280 nm) 0 µW/cm² = 0 W/m²
non-terrestrial ( 0 nm - 290 nm) 0 µW/cm² = 0 W/m²
total2 ( 250 nm - 880 nm) 1290 µW/cm² = 12.9 W/m²
UVB (EU) ( 280 nm - 315 nm) 85.4 µW/cm² = 0.854 W/m²
UVB (US) ( 280 nm - 320 nm) 126 µW/cm² = 1.26 W/m²
UVA+B ( 280 nm - 380 nm) 436 µW/cm² = 4.36 W/m²
Solar UVB ( 290 nm - 315 nm) 85.4 µW/cm² = 0.854 W/m²
UVA D3 regulating ( 315 nm - 335 nm) 160 µW/cm² = 1.6 W/m²
UVA (EU) ( 315 nm - 380 nm) 351 µW/cm² = 3.51 W/m²
UVA2 (medical definition) ( 320 nm - 340 nm) 155 µW/cm² = 1.55 W/m²
UVA (US) ( 320 nm - 380 nm) 310 µW/cm² = 3.1 W/m²
UVA1 (variant) ( 335 nm - 380 nm) 191 µW/cm² = 1.91 W/m²
UVA1 (medical) ( 340 nm - 400 nm) 176 µW/cm² = 1.76 W/m²
vis. UVA ( 350 nm - 380 nm) 91.1 µW/cm² = 0.911 W/m²
VIS Rep3 ( 350 nm - 600 nm) 790 µW/cm² = 7.9 W/m²
VIS Rep4 ( 350 nm - 700 nm) 909 µW/cm² = 9.09 W/m²
purple ( 380 nm - 420 nm) 97 µW/cm² = 0.97 W/m²
VIS ( 380 nm - 780 nm) 848 µW/cm² = 8.48 W/m²
PAR ( 400 nm - 700 nm) 797 µW/cm² = 7.97 W/m²
blue ( 420 nm - 490 nm) 249 µW/cm² = 2.49 W/m²
green ( 490 nm - 575 nm) 270 µW/cm² = 2.7 W/m²
yellow ( 575 nm - 585 nm) 51.4 µW/cm² = 0.514 W/m²
orange ( 585 nm - 650 nm) 104 µW/cm² = 1.04 W/m²
red ( 650 nm - 780 nm) 77.5 µW/cm² = 0.775 W/m²
IRA ( 700 nm - 1400 nm) 40.6 µW/cm² = 0.406 W/m²
IRB ( 1400 nm - 3000 nm) 0 µW/cm² = 0 W/m²
Actionspectra
Erythema 5.72 UV-Index
Pyrimidine dimerization of DNA 50.9 µW/cm²
Photoceratitis 8.92 µW/cm²
Photoconjunctivitis 0.186 µW/cm²
DNA Damage 0.658
Vitamin D3 24.1 µW/cm²
Photosynthesis 546 µW/cm²
Luminosity 2380 lx
Human L-Cone 346 µW/cm²
Human M-Cone 313 µW/cm²
Human S-Cone 216 µW/cm²
CIE X 296 µW/cm²
CIE Y 332 µW/cm²
CIE Z 393 µW/cm²
PAR 3850000 mol photons
Extinction preD3 143 e-3*m²/mol
Extinction Tachysterol 505 e-3*m²/mol
Exctincition PreD3 67100 m²/mol
Extinction Lumisterol 26 m²/mol
Exctincition Tachysterol 698000 m²/mol
Extinction 7DHC 25.6 m²/mol
L-Cone 282 µW/cm²
M-Cone 262 µW/cm²
S-Cone 398 µW/cm²
U-Cone 238 µW/cm²
UVR - ICNIRP 2004 4.83 Rel Biol Eff
Melatonin Supression 286 µW/cm²
Blue Light Hazard 249 µW/cm² (105 µW/cm² per 1000 lx)
CIE 174:2006 PreVit D3 26.5 µW/cm²
Lumen Reptil 2620 "pseudo-lx"
Vitamin D3 Degradation 24.7 µW/cm²
Actinic UV 4.78 µW/cm² (20.1 mW/klm)
Exctincition Lumisterol 36000 m²/mol
Exctincition 7DHC 32900 m²/mol
Exctincition Toxisterols 10400 m²/mol
Broadbandmeters
Solarmeter 6.2 (UVB, pre 2010) 146 µW/cm²
Solarmeter 6.5 (UV-Index, pre 2010) 6.85
Leybold UVB 108 µW/cm²
Leybold UVA 216 µW/cm²
Leybold UVC 0.0128 µW/cm²
DeltaOhm UVB 223 µW/cm²
DeltaOhm UVC 28.8 µW/cm²
Vernier UVB 41.1 µW/cm²
Vernier UVA 261 µW/cm²
Gröbel UVA 294 µW/cm²
Gröbel UVB 57.4 µW/cm²
Gröbel UVC -0.0418 µW/cm²
Solarmeter 6.4 (D3) 21.4 IU/min
UVX-31 240 µW/cm²
IL UVB 0.0609 µW/cm²
IL UVA 248 µW/cm²
Solarmeter 6.5 (UVI, post 2010) 5.54 UV-Index
Solarmeter 6.2 (UVB, post 2010) 93.9 µW/cm² (Solarmeter Ratio = 17)
Solarmeter AlGaN 6.5 UVI sensor 71.8 UV Index
GenUV 7.1 UV-Index 3.89 UV-Index
Solarmeter 10.0 (Global Power) 10.2 W/m²
Solarmeter 4.0 (UVA) 3.34 mW/cm²
LS122 0.00969 W/m²
ISM400 5.82 W/m²